当前位置: 首页 > news >正文

机器学习深度学习——随机梯度下降算法(及其优化)

在我们没有办法得到解析解的时候,我们可以用过梯度下降来进行优化,这种方法几乎可以所有深度学习模型。
关于优化的东西,我自己曾经研究过智能排班算法和优化,所以关于如何找局部最小值,以及如何跳出局部最小值的一些基本思想是有感触的,随机梯度算法和其优化学起来倒也不难。

梯度下降算法

  • 梯度下降法
  • 随机梯度下降法
  • 随机梯度下降算法的问题
  • 标准动量优化
  • Nesterov动量优化

梯度下降法

梯度下降法是一个一阶最优化算法,通常称为最速下降法,是通过函数当前点对应梯度的反方向,使用规定步长距离进行迭代搜索,从而找到函数的一个局部最小值的算法,最好的情况是找到全局最小值。

随机梯度下降法

但是直接使用使用梯度下降法的话,每次更新参数都需要用到所有的样本,样本总量太大的话就会对算法速度影响很大,所以有了随机梯度下降算法。
它是对梯度下降算法的一种改进,且每次只随机取一部分样本进行优化,样本数量一般是2的整数次幂,取值范围32~256,以保证计算精度的同时提升计算速度,是优化深度学习网络中最常用的一类算法。
其在训练中,通常会使用一个固定的学习率进行训练,即:
g t = ▽ θ t − 1 f ( θ t − 1 ) ▽ θ t = − η ∗ g t 其中, g t 是第 t 步的梯度, η 是学习率 g_t=▽_{θ_{t-1}}f(θ_{t-1})\\ ▽_{θ_t}=-η*g_t\\ 其中,g_t是第t步的梯度,η是学习率 gt=θt1f(θt1)θt=ηgt其中,gt是第t步的梯度,η是学习率
随机梯度下降算法在优化时,完全依赖于当前batch数据得到的梯度,而学习率则是调整梯度影响大小的参数,通过控制学习率η的大小,一定程度上可以控制网络训练速度。

随机梯度下降算法的问题

随机梯度下降对大多数情况都很有效,但还存在缺陷:
1、很难确定合适的η,且所有的参数使用同样的学习率可能并不是很有效。这种情况可以采用变化学习率的训练方式,如控制网络在初期以大的学习率进行参数更新,后期以小的学习率进行参数更新(其实和遗传算法中的交叉变异概率似的,大家可以去了解自适应遗传算法的思想,道理都是一样的)
2、更容易收敛到局部最优解,而且当落入到局部最优解的时候,不容易跳出。(其实也和遗传算法可能遇到的问题类似,当时是和模拟退火算法结合了,解决了过早收敛问题,实质思想就是增大变异概率,变异了就很可能跳出局部最优了)

标准动量优化

动量通过模拟物体运动时的惯性来更新网络中的参数,即更新时在一定程度上会考虑之前参数更新的方向,同时利用当前batch计算得到的梯度,将两者结合起来计算出最终参数需要更新的大小和方向。
在优化时引入动量思想旨在加速学习,特别是面对小而连续且含有很多噪声的梯度。利用动量不仅增加了学习参数的稳定性,还会更快的学习到收敛的参数。
在引入动量后,网络的参数更新方式:
g t = ▽ θ t − 1 f ( θ t − 1 ) m t = μ ∗ m t − 1 + g t ▽ θ t = − η ∗ m t m t 为当前动量的累加 μ 属于动量因子,用于调整上一步动量对参数的重要程度 g_t=▽_{θ_{t-1}}f(θ_{t-1})\\ m_t=μ*m_{t-1}+g_t\\ ▽_{θ_t}=-η*m_t\\ m_t为当前动量的累加\\ μ属于动量因子,用于调整上一步动量对参数的重要程度 gt=θt1f(θt1)mt=μmt1+gtθt=ηmtmt为当前动量的累加μ属于动量因子,用于调整上一步动量对参数的重要程度
在网络更新初期,可利用上一次参数更新,此时下降方向一致,乘以较大的μ能够进行很好的加速;在网络更新后期,随着梯度逐渐趋于0,在局部最小值来回震荡的时候,利用动量使得更新幅度增大,跳出局部最优解的陷阱。

Nesterov动量优化

Nesterov项(Nesterov动量)是在梯度更新时做出的校正,以避免参数更新的太快,同时提高灵敏度。在动量中,之前累积的动量并不会影响当前的梯度,所以Nesterov的改进就是让之前的动量直接影响当前的动量,即:
g t = ▽ θ t − 1 f ( θ t − 1 − η ∗ μ ∗ m t − 1 ) m t = μ ∗ m t − 1 + g t ▽ θ t = − η ∗ m t g_t=▽_{θ_{t-1}}f(θ_{t-1}-η*μ*m_{t-1})\\ m_t=μ*m_{t-1}+g_t\\ ▽_{θ_t}=-η*m_t gt=θt1f(θt1ημmt1)mt=μmt1+gtθt=ηmt
Nesterov动量与标准动量区别在于,在当前batch梯度的计算上,Nesterov动量的梯度计算是在施加当前速度之后的梯度。所以可以看成是在标准动量的方法上添加了一个校正因子,从而提高算法更新性能。
在训练开始的时候,参数可能离最最优质的较远,需要较大学习率,经过几轮训练后,减小训练学习率 (其实就是和自适应遗传算法的思想类似)。因此也提出了很多自适应学习率的算法Adadelta、RMSProp及adam等。

相关文章:

机器学习深度学习——随机梯度下降算法(及其优化)

在我们没有办法得到解析解的时候,我们可以用过梯度下降来进行优化,这种方法几乎可以所有深度学习模型。 关于优化的东西,我自己曾经研究过智能排班算法和优化,所以关于如何找局部最小值,以及如何跳出局部最小值的一些基…...

【MTK平台】【wpa_supplicant】关于wpa_supplicant_8/src/p2p/p2p.c文件的介绍

本文主要介绍external/wpa_supplicant_8/src/p2p/p2p.c文件 先看下p2p_find 这个方法 P2P_find 主要用于 P2P(点对点)网络中查找其他对等方的功能。另外可以看到设置P2P模块的状态为 P2P_SEARCH int p2p_find(struct p2p_data *p2p, unsigned int tim…...

华为数通HCIP-流量过滤与转发路径控制

流量控制 分类:流量过滤、流量转发路径控制; 特点:1、作用于数据层面/转发层面; 2、不会影响路由表,针对转发流量生效; 实现步骤: 1、通过流量匹配工具匹配流量(ACL…...

SpringBoot中定时任务开启多线程避免多任务堵塞

场景 SpringBoot中定时任务与异步定时任务的实现: SpringBoot中定时任务与异步定时任务的实现_霸道流氓气质的博客-CSDN博客 使用SpringBoot原生方式实现定时任务,已经开启多线程支持,以上是方式之一。 除此之外还可通过如下方式。 为什…...

回归预测 | MATLAB实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 Matlab实…...

入侵检测——IDS概述、签名技术

1. 什么是IDS? IDS(intrusion detection system)入侵检测系统,是一种对网络传输进行即时监视,在发现可疑传输时发出警报或者采取主动反应措施的网络安全设备。它会对系统的运行状态进行监视,发现各种攻击企…...

golang 标准库json Marshal 序列化与反序列化

标准库代码 func Marshal(v any) ([]byte, error) {e : newEncodeState()defer encodeStatePool.Put(e)err : e.marshal(v, encOpts{escapeHTML: true})if err ! nil {return nil, err}buf : append([]byte(nil), e.Bytes()...)return buf, nil }func Unmarshal(data []byte, …...

【【51单片机AD/DA的分析】】

51单片机AD/DA的分析 看似单片机实验,其实是要学好数电 模数转换 与 数模转换 运算放大器 DA的转换就是利用运算放大器实现的 输出电压v0-(D7~D0)/256 x (VrefxRfb)/R D7~D0 就是我们控制的按键看输入多少 然后再划分256份 Vref是我们设置的一个基准电压 PWM 这种…...

在docker中安装使用达梦数据库

关于在docker中安装达梦数据库,达梦官方网站其实是有提供安装使用方法的,但可能还是有朋友不会,这里将在原文基础上简单扩充下。 注意:docker容器中,数据库安装后没有创建服务的脚本,只有bin、bin2、conf、…...

Leetcode-每日一题【剑指 Offer II 010. 和为 k 的子数组】

题目 给定一个整数数组和一个整数 k &#xff0c;请找到该数组中和为 k 的连续子数组的个数。 示例 1&#xff1a; 输入:nums [1,1,1], k 2输出: 2解释: 此题 [1,1] 与 [1,1] 为两种不同的情况 示例 2&#xff1a; 输入:nums [1,2,3], k 3输出: 2 提示: 1 < nums.leng…...

【JavaScript】使用Promise来处理异步调用,方法传入参数为接口,并回调接口的方法

例如我们在下面这个方法传入一个接口&#xff0c;并将方法的执行过程用传入的接口进行回调 connect() {wx.connectSocket({url: this.url,success: () > {console.log(WebSocket 连接创建成功);},fail: (err) > {console.error(WebSocket 连接创建失败, err);}});wx.onS…...

grid map学习笔记1之Ubuntu18.04+ROS-melodic编译安装grid_map栅格地图及示例运行

文章目录 0 引言1 安装依赖和编译1.1 安装依赖1.2 下载编译 2 运行示例2.1 simple_demo2.2 tutorial_demo2.3 iterators_demo2.4 image_to_gridmap_demo2.5 grid_map_to_image_demo2.6 opencv_demo2.7 resolution_change_demo2.8 filters_demo2.9 interpolation_demo 0 引言 苏…...

postgres wal2json插件jsonb字段数据丢失问题解决

使用pgwal2jsondebezium进行数据同步时&#xff0c;发现偶尔会有jsonb字段数据丢失的问题 进行测试时发现&#xff1a; 1、发生数据丢失的jsonb字段长度都比较大(超过toast阈值&#xff0c;使用toast表存储) 2、针对发生jsonb字段丢失的数据&#xff0c;jsonb字段本身未发生修…...

华为eNSP:路由引入

一、拓扑图 二、路由器的配置 1、配置路由器的IP AR1&#xff1a; [Huawei]int g0/0/0 [Huawei-GigabitEthernet0/0/0]ip add 1.1.1.1 24 [Huawei-GigabitEthernet0/0/0]qu AR2&#xff1a; [Huawei]int g0/0/0 [Huawei-GigabitEthernet0/0/0]ip add 1.1.1.2 24 [Huaw…...

Retrospectives on the Embodied AI Workshop(嵌入式人工智能研讨会回顾) 论文阅读

论文信息 题目&#xff1a;Retrospectives on the Embodied AI Workshop 作者&#xff1a;Matt Deitke, Dhruv Batra, Yonatan Bisk 来源&#xff1a;arXiv 论文地址&#xff1a;https://arxiv.org/pdf/2210.06849 Abstract 我们的分析重点关注 CVPR Embodied AI Workshop 上…...

「JVM」Full GC和Minor GC、Major GC

Full GC和Minor GC、Major GC 一、Full GC1、什么是Full GC?2、什么情况下会触发full gc&#xff1f; 二、Minor GC1、什么是Minor GC&#xff1f;2、什么情况下会触发Minor GC&#xff1f; 三、Major GC1、什么是Major GC&#xff1f;2、什么情况下会触发Major GC&#xff1f…...

Asp.Net MVC 使用Log4Net

Asp.Net MVC 使用Log4Net 在 ASP.NET MVC 中使用 Log4net 需要进行一些配置和代码集成。下面是在 ASP.NET MVC 中使用 Log4net 的步骤&#xff1a; 1. 安装 Log4net NuGet 包 打开 NuGet 包管理器控制台&#xff0c;并运行以下命令来安装 Log4net&#xff1a; Install-Pack…...

[元带你学: eMMC协议 29] eMMC 断电通知(PON) | 手机平板电脑断电通知

依JEDEC eMMC及经验辛苦整理,原创保护,禁止转载。 专栏 《元带你学:eMMC协议》 内容摘要 全文 2000 字, 主要内容 前言 断电通知是什么? 断电通知过程...

vue使用recorder-core.js实现录音功能

下载组件 npm install recorder-core封装方法 record.ts //必须引入的核心 import Recorder from recorder-core;//引入mp3格式支持文件&#xff1b;如果需要多个格式支持&#xff0c;把这些格式的编码引擎js文件放到后面统统引入进来即可 import recorder-core/src/engine/…...

ThinkPHP8知识详解:给PHP8和MySQL8添加到环境变量

在PHPenv安装的时候&#xff0c;环境变量默认的PHP版本是7.4的&#xff0c;MySQL的版本是5.7的&#xff0c;要想使用ThinkPHP8来开发&#xff0c;就必须修改环境变量&#xff0c;本文就详细讲解了如果修改PHP和MySQL的环境变量。 1、添加网站 启动phpenv&#xff0c;网站&…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...