基于Autoencoder自编码的64QAM星座图整形调制解调通信系统性能matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
4.1星座图整形
4.2自编码器
4.3基于Autoencoder的星座图整形调制解调模型
4.4 实现过程
5.算法完整程序工程
1.算法运行效果图预览



2.算法运行软件版本
matlab2022a
3.部分核心程序
...............................................................................parse(p,varargin{:})layer.NoiseMethod = p.Results.NoiseMethod;layer.EbNo = p.Results.EbNo;layer.EsNo = p.Results.EsNo;layer.SNR = p.Results.SNR;layer.BitsPerSymbol = p.Results.BitsPerSymbol;layer.SignalPower = p.Results.SignalPower;layer.Name = p.Results.Name;if isempty(p.Results.Description)switch p.Results.NoiseMethodcase 'EbNo'value = layer.EbNo;case 'EsNo'value = layer.EsNo;case 'SNR'value = layer.SNR;endlayer.Description = "AWGN channel with " + p.Results.NoiseMethod ...+ " = " + num2str(value);elselayer.Description = p.Results.Description;endlayer.Type = 'AWGN Channel';samplesPerSymbol = 1;if strcmp(layer.NoiseMethod, 'EbNo')EsNo = layer.EbNo + 10*log10(layer.BitsPerSymbol);layer.LocalSNR = EsNo - 10*log10(samplesPerSymbol);elseif strcmp(layer.NoiseMethod, 'EsNo')EsNo = layer.EsNo;layer.LocalSNR = EsNo - 10*log10(samplesPerSymbol);elselayer.LocalSNR = layer.SNR;endend....................................................function dLdX = ...backward(layer, X, Z, dLdZ,memory)dLdX = dLdZ;endfunction sl = saveobj(layer)sl.NoiseMethod = layer.NoiseMethod;sl.EbNo = layer.EbNo;sl.EsNo = layer.EsNo;sl.SNR = layer.SNR;sl.BitsPerSymbol = layer.BitsPerSymbol;sl.SignalPower = layer.SignalPower;sl.LocalEsNo = layer.LocalEsNo;sl.LocalSNR = layer.LocalSNR;endfunction layer = reload(layer,sl)layer.NoiseMethod = sl.NoiseMethod;layer.EbNo = sl.EbNo;layer.EsNo = sl.EsNo;layer.SNR = sl.SNR;layer.BitsPerSymbol = sl.BitsPerSymbol;layer.SignalPower = sl.SignalPower;layer.LocalEsNo = sl.LocalEsNo;layer.LocalSNR = sl.LocalSNR;endendmethods (Static)function layer = loadobj(sl)if isstruct(sl)layer = AutoEncode_channel;elselayer = sl;endlayer = reload(layer,sl);endend
end
0031
4.算法理论概述
自编码器(Autoencoder)是一种深度学习模型,可以通过无监督学习的方式来学习数据的低维表示。64QAM星座图整形调制解调通信系统是一种数字通信系统,可以在有限的带宽资源下实现高速数据传输。
64QAM星座图调制是一种基于星座图的调制方式,可以将数据符号映射到星座图上进行调制。64QAM星座图调制可以表示为:
$$s_n=a_{i}+jb_{j}$$
其中,$a_{i}$和$b_{j}$是星座图上的调制点,$i,j\in [-3,3]$。64QAM星座图调制可以实现高速数据传输,但是由于星座图上的调制点分布不均匀,容易出现调制误差。
4.1星座图整形
为了解决64QAM星座图调制中的问题,可以通过星座图整形来调整星座图上的调制点。星座图整形可以表示为:
$$s_n=f(r_n)e^{j\theta_n}$$
其中,$r_n$和$\theta_n$是星座图上的极坐标表示,$f(\cdot)$是星座图整形函数。星座图整形可以使星座图上的调制点更加均匀分布,从而减少调制误差。
4.2自编码器
自编码器是一种深度学习模型,可以通过无监督学习的方式来学习数据的低维表示。自编码器的数学模型可以表示为:
$$\hat{x}=f(g(x))$$
其中,$x$是输入数据,$\hat{x}$是重构后的数据,$g(\cdot)$和$f(\cdot)$是编码器和解码器,可以使用不同的神经网络实现。
4.3基于Autoencoder的星座图整形调制解调模型
基于Autoencoder的星座图整形调制解调模型可以表示为:
$$\hat{s}_n=f(g(r_n)e^{j\theta_n})e^{j\theta_n}$$
其中,$\hat{s}_n$是重构后的调制点,$r_n$和$\theta_n$是输入的星座图上的极坐标表示,$g(\cdot)$和$f(\cdot)$是编码器和解码器。该模型可以通过Autoencoder自编码器来学习星座图整形和解调的映射关系。
4.4 实现过程
首先,需要对输入的星座图数据进行预处理,包括数据格式转换、归一化等。预处理过程可以提高模型的鲁棒性和准确性。接下来,需要利用已知的星座图数据集对Autoencoder自编码器进行训练。在训练过程中,需要选择合适的损失函数和优化算法,以提高模型的准确性和泛化能力。 在模型训练完成后,需要利用测试数据集对模型进行测试。测试过程中,需要计算模型的准确性、召回率、精确度和F1值等指标,以评估模型的性能。
在实际应用中,需要实现实时解调。这可以通过将训练好的模型部署到实际系统中来实现。在实时解调过程中,需要将接收到的信号进行采样和量化,并将量化后的信号输入到模型中进行解调。解调后的数据可以通过解码器进行解码,得到原始数据。
基于Autoencoder自编码的64QAM星座图整形调制解调通信系统可以应用于数字通信系统中,特别是在高速数据传输场景下。该系统可以通过学习星座图整形和解调的映射关系,实现更加准确和鲁棒的调制和解调过程,提高数据传输的可靠性和速度。
5.算法完整程序工程
OOOOO
OOO
O
相关文章:
基于Autoencoder自编码的64QAM星座图整形调制解调通信系统性能matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1星座图整形 4.2自编码器 4.3基于Autoencoder的星座图整形调制解调模型 4.4 实现过程 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .…...
【Spring】Spring 总览
一、简单介绍一下 Spring Spring是一个全面的、企业应用开发的一站式解决方案,贯穿表现层、业务层、持久层,可以轻松和其他框架整合,具有轻量级、控制反转、面向切面、容器等特征。 轻量级 : 空间开销和时间开销都很轻量 控制反…...
微软、OpenAI用上“数据永动机” 合成数据是晨曦还是暮光?
微软、OpenAI、Cohere等公司已经开始测试使用合成数据来训练AI模型。Cohere首席执行官Aiden Gomez表示,合成数据可以适用于很多训练场景,只是目前尚未全面推广。 已有的(通用)数据资源似乎接近效能极限,开发人员认为&a…...
简单认识Redis 数据库的高可用
文章目录 一、Redis 高可用:1.简介:2、在Redis中实现高可用的技术 二、Redis持久化:1.持久化的功能:2.Redis 提供两种方式进行持久化: 三、RDB 持久化:1.简介:2.触发条件:4.启动时加…...
超级实用!,掌握这9个鲜为人知的CSS属性
微信搜索 【大迁世界】, 我会第一时间和你分享前端行业趋势,学习途径等等。 本文 GitHub https://github.com/qq449245884/xiaozhi 已收录,有一线大厂面试完整考点、资料以及我的系列文章。 快来免费体验ChatGpt plus版本的,我们出的钱 体验地…...
深圳国际新能源及智能网联汽车全产业博览会今年10月举办
7月25日,深圳市工业和信息化局与励展博览集团共同在深圳举办Automotive World China 2023深圳国际新能源及智能网联汽车全产业博览会(简称“AWC 2023”)全球推介启动大会,该博览会将于2023年10月11日-13日在深圳国际会展中心盛大举…...
【具有非线性反馈的LTI系统识别】针对反馈非线性的LTI系统,提供非线性辨识方案(SimulinkMatlab代码实现)
目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码、Simulink仿真实现 💥1 概述 本文为具有反馈非线性的LTI系统提供了一种非线性识别方案,这取决于输入和LTI系统输出。对于MEMS来说尤其如此&#…...
Stable diffusion 和 Midjourney 怎么选?
通过这段时间的摸索,我将和你探讨,对普通人来说,Stable diffusion 和 Midjourney 怎么选?最重要的是,学好影视后期制作对 AI 绘画创作有哪些帮助?反过来,AI 绘画对影视后期又有哪些帮助…...
c++网络编程
网络编程模型 c/s 模型:客户端服务器模型b/s 模型:浏览器服务器模型1.tcp网络流程 服务器流程: 1.创建套接字2.完善服务器网络信息结构体3.绑定服务器网络信息结构体4.让服务器处于监听状态5.accept阻塞等待客户端连接信号6.收发数据7.关闭套…...
【沁恒蓝牙mesh】数据收发接口与应用层模型传递
本文主要描述了沁恒蓝牙mesh SDK的蓝牙数据收发接口,以及应用层的回调函数解析以及模型传递 这里写目录标题 1. 数据收发接口1.1【发送数据】1.2 【数据接收】 2. 应用层模型分析 1. 数据收发接口 1.1【发送数据】 /*(1)接口1 */ /*接口一&…...
Java类关系之代理(代理模式)
在Java中,如果一个类需要使用另一个类的方法,我们可以使用继承的方式实现,那么问题来了,如果这个类恰恰在逻辑关系上不能使用继承怎么办呢?比如说,飞机和控制台这两个类,控制台的方法有上下左右…...
java: 无法访问redis.clients.jedis.JedisPoolConfig
问题描述: 在编译java springboot程序的时候报错 java: 无法访问redis.clients.jedis.JedisPoolConfig 找不到redis.clients.jedis.JedisPoolConfig的类文件 问题分析 该问题是由于找不到JedisPoolConfig包导致的,很可能是没有添加相关的依赖 问题解决 在pom文件中添加依赖项…...
基于java中学教务管理系统设计与实现
摘要 随着现代技术的不断发展,计算机已经深度的应用到了当下的各个行业之中,教育行业也不例外。计算机对教育行业中的教务管理等内容的帮助,使得教职工从传统的手工办公像计算机辅助阶段迈进,并且实现了非常好的发展。现在的学校在…...
vscode设置java -Xmx最大堆内存
如果在vscode中直接运行java程序,想要改下每次运行的最大堆内存,按照如下修改 一、vscode安装java插件 当然前提是vscode在应用管理中已经安装了java语言的插件,Debugger for Java,如下图所示 二、CommandShiftP打开配置搜索框 三、搜索…...
组件开发系列--Apache Commons Chain
一、前言 Commons-chain是apache commons中的一个子项目,主要被使用在"责任链"的场景中,struts中action的调用过程,就是使用了"chain"框架做支撑.如果你的项目中,也有基于此种场景的需求,可以考虑使用它. 在责任链模式里,很多对象由每一个对象对…...
60 # http 的基本概念
什么是 HTTP? 通常的网络是在 TCP/IP 协议族的基础上来运作的,HTTP 是一个子集。http 基于 tcp 的协议,在 tcp 的基础上增加了一些规范,就是 header,学习 http 就是学习每个 header 它有什么作用。 TCP/IP 协议族 协…...
云计算迎来中场战役,MaaS或将成为弯道超车“新赛点”
科技云报道原创。 没有人能预见未来,但我们可以因循常识,去捕捉技术创新演进的节奏韵脚。 2023年最火的风口莫过于大模型。 2022年底,由美国初创企业OpenAI开发的聊天应用ChatGPT引爆市场,生成式AI成为科技市场热点,…...
最新基于Citespace、vosviewer、R语言的文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作方法
文献计量学是指用数学和统计学的方法,定量地分析一切知识载体的交叉科学。它是集数学、统计学、文献学为一体,注重量化的综合性知识体系。特别是,信息可视化技术手段和方法的运用,可直观的展示主题的研究发展历程、研究现状、研究…...
Hive调优集锦(2)
3.8 Join 优化 Join优化整体原则: 1、优先过滤后再进行 join 操作,最大限度的减少参与 join 的数据量 2、小表 join 大表,最好启动 mapjoin,hive 自动启用 mapjoin, 小表不能超过25M,可以更改 3、Join on的条件相同的…...
一文谈谈Git
"And if forever lasts till now Alright" 为什么要有git? 想象一下,现如今你的老师同时叫你和张三,各自写一份下半年的学习计划交给他。 可是你的老师是一个极其"较真"的人,发现你俩写的学习计划太"水&…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
