当前位置: 首页 > news >正文

【数据挖掘】PCA/LDA/ICA:A成分分析算法比较

一、说明

        在深入研究和比较算法之前,让我们独立回顾一下它们。请注意,本文的目的不是深入解释每种算法,而是比较它们的目标和结果。

如果您想了解更多关于PCA和ZCA之间的区别,请查看我之前基于numpy的帖子:

PCA 美白与 ZCA 美白:2D 视觉效果

白化数据的过程包括转换,使得转换后的数据具有单位矩阵作为...

towardsdatascience.com

二、各类降维模型概念

2.1 PCA : 主成分分析

  • PCA是一种无监督线性降维技术,旨在找到一组新的正交变量,以捕获数据中最重要的可变性来源。
  • 它广泛用于特征提取和数据压缩,可用于探索性数据分析或作为机器学习算法的预处理步骤。
  • 生成的分量按其解释的方差量进行排名,可用于可视化和解释数据,以及用于聚类或分类任务。

2.2 LDA : 线性判别分析

  • LDA 是一种受监督的线性降维技术,旨在找到一组新的变量,以最大化类之间的分离,同时最小化每个类内的变化。
  • 它广泛用于特征提取和分类,可用于降低数据的维数,同时保留类之间的判别信息。
  • 生成的组件按其判别能力进行排名,可用于可视化和解释数据,以及用于分类或回归任务。

2.3 ICA : 独立成分分析

  • ICA是一种无监督线性降维技术,旨在找到一组统计上独立且非高斯的新变量。
  • 它广泛用于信号处理和源分离,并可用于提取数据中无法通过其他技术访问的潜在可变性源。
  • 生成的组件按其独立性进行排名,可用于可视化和解释数据,以及用于聚类或分类任务。

三、鸢尾花数据集上的结果

        让我们使用 sklearn 比较他们在著名的鸢尾花数据集上的结果。首先,让我们在 4 个数值特征中的每一个上使用配对图绘制鸢尾花数据集,并将颜色作为分类特征:

import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris# Load the iris dataset
iris = load_iris()
data = iris.data
target = iris.target
target_names = iris.target_names# Convert the iris dataset into a pandas DataFrame
iris_df = sns.load_dataset('iris')
iris_df['target'] = target# Generate the pairplot∑
sns.pairplot(data=iris_df, hue='target', palette=['navy', 'turquoise', 'darkorange'], markers=['o', 's', 'D'],plot_kws=dict(s=25, alpha=0.8, edgecolor='none'), diag_kws=dict(alpha=0.8, edgecolor='none'))# Set the title and adjust plot spacing
plt.suptitle('Iris Pairplot')
plt.subplots_adjust(top=0.92)plt.show()

图片来源:虹膜数据集对图

现在,我们可以计算每个变换并绘制结果。请注意,我们只使用 2 个组件,因为 LDA 最多需要 (N-1) 个组件,其中 N 是类别的数量(这里等于 3,因为有 3 种类型的鸢尾花)。

from sklearn.datasets import load_iris
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA, FastICA
import matplotlib.pyplot as plt# Load the Iris dataset
iris = load_iris()
X = iris.data
y = iris.target
target_names = iris.target_names# Standardize the data
scaler = StandardScaler()
X_std = scaler.fit_transform(X)# Apply LDA with 2 components
lda = LinearDiscriminantAnalysis(n_components=2)
X_lda = lda.fit_transform(X_std, y)# Apply PCA with 2 components
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_std)# Apply ICA with 2 components
ica = FastICA(n_components=2)
X_ica = ica.fit_transform(X_std)# Plot the results
plt.figure(figsize=(15, 5))plt.subplot(1, 3, 1)
for target, color in zip(range(len(target_names)), ['navy', 'turquoise', 'darkorange']):plt.scatter(X_lda[y == target, 0], X_lda[y == target, 1], color=color, alpha=.8, lw=2,label=target_names[target])
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('LDA')
plt.xlabel('LD1')
plt.ylabel('LD2')plt.subplot(1, 3, 2)
for target, color in zip(range(len(target_names)), ['navy', 'turquoise', 'darkorange']):plt.scatter(X_pca[y == target, 0], X_pca[y == target, 1], color=color, alpha=.8, lw=2,label=target_names[target])
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('PCA')
plt.xlabel('PC1')
plt.ylabel('PC2')plt.subplot(1, 3, 3)
for target, color in zip(range(len(target_names)), ['navy', 'turquoise', 'darkorange']):plt.scatter(X_ica[y == target, 0], X_ica[y == target, 1], color=color, alpha=.8, lw=2,label=target_names[target])
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('ICA')
plt.xlabel('IC1')
plt.ylabel('IC2')plt.show()

This code loads the Iris dataset, applies LDA, PCA, and ICA with 2 components each, and then plots the results using different colors for each class.

        请注意,在应用 PCA、ICA 或 LDA 之前标准化数据通常是一种很好的做法。标准化很重要,因为这些技术对输入要素的比例很敏感。标准化数据可确保每个要素的均值为 0,标准差为 1,这会将所有要素置于同一尺度上,并避免一个要素凌驾于其他要素之上。

        由于LDA是一种监督降维技术,因此它将类标签作为输入。相比之下,PCA和ICA是无监督技术,这意味着它们只使用输入数据,而不考虑类标签。

        LDA 的结果可以解释为将数据投影到最大化类分离的空间上,而 PCA 和 ICA 的结果可以解释为将数据投影到空间上,该空间分别捕获最重要的可变性或独立性来源。

图片来源:虹膜数据集上LDA,PCA和ICA的比较

        请注意,ICA仍然显示类别之间的分离,尽管不是其目的:这是因为类别已经在输入数据集中进行了相当排序。

        让我们把LDA放在一边,专注于PCA和ICA之间的差异 - 因为LDA是一种监督技术,专注于分离类别并强制实施最大的组件,而PCA和ICA专注于创建一个与输入矩阵形状相同的新矩阵。

        让我们看看 PCA 和 ICA 的 4 个组件的输出:

左:PCA的对图/右:ICA的对图(图片由作者提供)

        让我们也比较每个转换数据的相关矩阵:请注意,这两种方法都会导致不相关的向量(换句话说,转换后的数据特征是正交的)。这是因为它是PCA算法中的一个约束 - 每个新向量必须与以前的向量正交 - 并且是ICA算法的结果 - 这意味着原始数据集是已经混合在一起的独立信号,必须重建。

左:ICA的相关热图/右:PCA的相关热图(图片由作者提供)

        所以PCA和ICA似乎给出了具有相似性质的结果:这是因为以下2个原因:

  • 独立性在两种算法中都“编码”
  • 鸢尾花数据集表现出分离良好的类

这就是为什么我们需要另一个更适合ICA的例子。

四、另一个例子:

        让我们看另一个例子:我们首先生成一个合成数据集,其中包含两个独立的源,一个正弦波和一个方波,它们作为线性组合混合在一起以创建混合信号。

        实际的、真实的、独立的信号如下:

        它们混合在一起,作为 2 个线性组合:

        让我们看看PCA和ICA在这个新数据集上的表现:

        注意PCA如何创建一个新组件,该组件表现出很大的方差,作为输入的线性组合,但这绝对与原始数据不匹配:这确实不是PCA的目的。

        相反,ICA在恢复原始数据集方面表现非常好,与方差组成无关。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import FastICA# Generate a synthetic dataset with two independent sources
np.random.seed(0)
n_samples = 2000
time = np.linspace(0, 8, n_samples)s1 = np.sin(2 * time) # Source 1: sine wave
s2 = np.sign(np.sin(3 * time)) # Source 2: square waveS = np.c_[s1, s2]
S += 0.2 * np.random.normal(size=S.shape) # Add noise to the sources
S /= S.std(axis=0) # Standardize the sources# Mix the sources together to create a mixed signal
A = np.array([[0.5, 0.5], [0.2, 0.8]]) # Mixing matrix
X = np.dot(S, A.T) # Mixed signal# Standardize the data
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)# Use PCA to reduce the dimensionality of the data
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)# Use ICA to separate the sources from the mixed signal
ica = FastICA(n_components=2)
X_ica = ica.fit_transform(X) # Estimated sources# Plot the results
plt.figure()models = [X, S, X_pca, X_ica]
names = ['Observations (mixed signal)','True Sources','PCA features', 'ICA estimated sources']
colors = ['red', 'steelblue']for ii, (model, name) in enumerate(zip(models, names), 1):plt.subplot(4, 1, ii)plt.title(name)for sig, color in zip(model.T, colors):plt.plot(sig, color=color)plt.tight_layout()
plt.show()

五、结论

        PCA、LDA 和 ICA 算法可能看起来像是彼此的自定义版本,但它们实际上没有相同的目的。总结一下:

  • PCA旨在创建保持输入最大方差的新组件
  • LDA 旨在创建基于分类特征分隔集群的新组件
  • ICA 旨在检索在输入数据集中以线性组合混合在一起的原始要素

        希望您更好地了解这些算法之间的差异,并能够在将来快速识别您需要的算法。

相关文章:

【数据挖掘】PCA/LDA/ICA:A成分分析算法比较

一、说明 在深入研究和比较算法之前,让我们独立回顾一下它们。请注意,本文的目的不是深入解释每种算法,而是比较它们的目标和结果。 如果您想了解更多关于PCA和ZCA之间的区别,请查看我之前基于numpy的帖子: PCA 美白与…...

微服务模式:业务服务模式

无论是单体应用还是微服务,构建企业应用的业务逻辑/服务在更多方面上都有相似之处而不是差异。在两种方法中,都包含服务、实体、仓库等类。然而,也会发现一些明显的区别。在本文中,我将试图以概念性的方式强调这些区别&#xff0c…...

idea中创建请求基本操作

文章目录 说明效果创建GET请求没有参数带有参数带有环境变量带有动态参数 说明 首先通过###三个井号键来分开每个请求体,然后请求url和header参数是紧紧挨着的,请求参数不管是POST的body传参还是GET的parameter传参,都是要换行的,…...

springboot整合log4j2

1.排除springboot本身日志 2.添加log4j2 maven没有父项目 就必须指定version!! 3.配置application.yml文件 打印sql级别为debug 4.配置log4j2.xmllogging.configclasspath:log4j2.xml logging.level.com.zhkj.shoppingdebug #mybatis-plus.mapper-locations classpath*:/mapp…...

Linux输出内容到指定文件

1. 记录终端输出至文本文件 1.1 解决方案1:利用>和>>命令 区别: > 是把输出转向到指定的文件。注意:如文件已存在的话会重新写入,文件原内容不会保留。 >> 是把输出附加到文件的后面,文件原内容会…...

mysql主从同步怎么跳过错误

今天介绍两种mysql主从同步跳过错误的方法: 一、两种方法介绍 1、跳过指定数量的事务: mysql>slave stop; mysql>SET GLOBAL SQL_SLAVE_SKIP_COUNTER 1 #跳过一个事务 mysql>slave start2、修改mysql的配置文件,通过slav…...

【论文阅读】DEPIMPACT:反向传播系统依赖对攻击调查的影响(USENIX-2022)

Fang P, Gao P, Liu C, et al. Back-Propagating System Dependency Impact for Attack Investigation[C]//31st USENIX Security Symposium (USENIX Security 22). 2022: 2461-2478. 攻击调查、关键边、入口点 开源:GitHub - usenixsub/DepImpact 目录 1. 摘要2. 引…...

Nginx 功能及配置详解

一、Nginx概述 Nginx是一款高性能的HTTP和反向代理服务器,也是一款IMAP/POP3/SMTP代理服务器。Nginx被广泛应用于服务端的Web开发,主要用于提供高效、稳定的网页访问服务。Nginx的主要特点包括:高并发连接处理能力、稳定性高、配置灵活和功能…...

CSS 瀑布流效果效果

示例 <!DOCTYPE html> <html lang="cn"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>瀑布流效果</title><style>…...

Python 进阶(一):PyCharm 下载、安装和使用

❤️ 博客主页&#xff1a;水滴技术 &#x1f338; 订阅专栏&#xff1a;Python 入门核心技术 &#x1f680; 支持水滴&#xff1a;点赞&#x1f44d; 收藏⭐ 留言&#x1f4ac; 文章目录 一、下载 PyCharm二、安装 PyCharm三、创建项目四、界面汉化五、实用技巧5.1、使用快捷…...

微信小程序使用ECharts的示例详解

目录 安装 ECharts 组件使用 ECharts 组件图表延迟加载 echarts-for-weixin 是 ECharts 官方维护的一个开源项目&#xff0c;提供了一个微信小程序组件&#xff08;Component&#xff09;&#xff0c;我们可以通过这个组件在微信小程序中使用 ECharts 绘制图表。 echarts-fo…...

微信小程序生成二维码(weapp-qrcode)可添加logo

插件 npm 地址&#xff1a;https://www.npmjs.com/package/weapp-qrcode 插件 GitHub 地址&#xff1a;https://github.com/yingye/weapp-qrcode/tree/master 一、引入 1、根据 GitHub 指引将 weapp-qrcode 放到本地 uitl 文件夹下&#xff1b; 2、创建 canvas <canvas c…...

【云原生】Docker容器资源限制(CPU/内存/磁盘)

目录 ​编辑 1.限制容器对内存的使用 2.限制容器对CPU的使用 3.block IO权重 4.实现容器的底层技术 1.cgroup 1.查看容器的ID 2.在文件中查找 2.namespace 1.Mount 2.UTS 3.IPC 4.PID 5.Network 6.User 1.限制容器对内存的使用 ⼀个 docker host 上会运⾏若⼲容…...

内核链表在用户程序中的移植和使用

基础知识 struct list_head {struct list_head *next, *prev; }; 初始化&#xff1a; #define LIST_HEAD_INIT(name) { (name)->next (name); (name)->prev (name);} 相比于下面这样初始化&#xff0c;前面初始化的好处是&#xff0c;处理链表的时候&#xff0c;不…...

使用C#基于ComPDFKit SDK快速构建PDF阅读器

在当今世界&#xff0c;Windows 应用程序对我们的工作至关重要。随着处理 PDF 文档的需求不断增加&#xff0c;将 ComPDFKit PDF 查看和编辑功能集成到您的 Windows 应用程序或系统中&#xff0c;可以极大地为您的用户带来美妙的体验。 在本博客中&#xff0c;我们将首先探索集…...

el-tabel导出excel表格

1、安装插件 npm install file-saver --save npm install xlsx --save 2、引入插件 import FileSaver from "file-saver"; import * as XLSX from xlsx; 3、在tabel中添加ref属性和导出方法 4、添加方法 exportExcel (excelName) {try {const $e this.$refs[repo…...

双击start.bat文件闪退,运行报错“unable to access jarfile”

问题&#xff1a;电脑运行“start.bat”文件&#xff0c;无反应&#xff0c;闪退&#xff0c;管理员身份运行报错“unable to access jarfile” 解决思路&#xff1a; 1、由于该项目运行需要jdk环境&#xff0c;检查jdk版本需要是1.8.0_251版本 通过在 cmd 命令行输入java -v…...

大数据Flink(五十一):Flink的引入和Flink的简介

文章目录 Flink的引入和Flink的简介 一、Flink的引入 1、第1代——Hadoop MapReduce...

c语言的数据类型 -- 与GPT对话

1 c语言的数据类型 在C语言中,数据类型用于定义变量的类型和存储数据的方式。C语言支持多种数据类型,包括基本数据类型和派生数据类型。以下是C语言中常见的数据类型: 基本数据类型(Primary Data Types): int: 整数类型,通常表示带符号的整数。char: 字符类型,用于存储…...

Truffle 进行智能合约测试

其他依赖 node.js、 由于是利用npm进行&#xff0c;所以先设置国内镜像源。去网上搜 1.安装truffle npm install truffle -gtruffle --version 安装完其他项目依赖&#xff0c;能够产生一下效果 2.项目创建 创建test文件夹 mkdir test进入test cd test初始化项目 truffle …...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...