当前位置: 首页 > news >正文

【数据挖掘】PCA/LDA/ICA:A成分分析算法比较

一、说明

        在深入研究和比较算法之前,让我们独立回顾一下它们。请注意,本文的目的不是深入解释每种算法,而是比较它们的目标和结果。

如果您想了解更多关于PCA和ZCA之间的区别,请查看我之前基于numpy的帖子:

PCA 美白与 ZCA 美白:2D 视觉效果

白化数据的过程包括转换,使得转换后的数据具有单位矩阵作为...

towardsdatascience.com

二、各类降维模型概念

2.1 PCA : 主成分分析

  • PCA是一种无监督线性降维技术,旨在找到一组新的正交变量,以捕获数据中最重要的可变性来源。
  • 它广泛用于特征提取和数据压缩,可用于探索性数据分析或作为机器学习算法的预处理步骤。
  • 生成的分量按其解释的方差量进行排名,可用于可视化和解释数据,以及用于聚类或分类任务。

2.2 LDA : 线性判别分析

  • LDA 是一种受监督的线性降维技术,旨在找到一组新的变量,以最大化类之间的分离,同时最小化每个类内的变化。
  • 它广泛用于特征提取和分类,可用于降低数据的维数,同时保留类之间的判别信息。
  • 生成的组件按其判别能力进行排名,可用于可视化和解释数据,以及用于分类或回归任务。

2.3 ICA : 独立成分分析

  • ICA是一种无监督线性降维技术,旨在找到一组统计上独立且非高斯的新变量。
  • 它广泛用于信号处理和源分离,并可用于提取数据中无法通过其他技术访问的潜在可变性源。
  • 生成的组件按其独立性进行排名,可用于可视化和解释数据,以及用于聚类或分类任务。

三、鸢尾花数据集上的结果

        让我们使用 sklearn 比较他们在著名的鸢尾花数据集上的结果。首先,让我们在 4 个数值特征中的每一个上使用配对图绘制鸢尾花数据集,并将颜色作为分类特征:

import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris# Load the iris dataset
iris = load_iris()
data = iris.data
target = iris.target
target_names = iris.target_names# Convert the iris dataset into a pandas DataFrame
iris_df = sns.load_dataset('iris')
iris_df['target'] = target# Generate the pairplot∑
sns.pairplot(data=iris_df, hue='target', palette=['navy', 'turquoise', 'darkorange'], markers=['o', 's', 'D'],plot_kws=dict(s=25, alpha=0.8, edgecolor='none'), diag_kws=dict(alpha=0.8, edgecolor='none'))# Set the title and adjust plot spacing
plt.suptitle('Iris Pairplot')
plt.subplots_adjust(top=0.92)plt.show()

图片来源:虹膜数据集对图

现在,我们可以计算每个变换并绘制结果。请注意,我们只使用 2 个组件,因为 LDA 最多需要 (N-1) 个组件,其中 N 是类别的数量(这里等于 3,因为有 3 种类型的鸢尾花)。

from sklearn.datasets import load_iris
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA, FastICA
import matplotlib.pyplot as plt# Load the Iris dataset
iris = load_iris()
X = iris.data
y = iris.target
target_names = iris.target_names# Standardize the data
scaler = StandardScaler()
X_std = scaler.fit_transform(X)# Apply LDA with 2 components
lda = LinearDiscriminantAnalysis(n_components=2)
X_lda = lda.fit_transform(X_std, y)# Apply PCA with 2 components
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_std)# Apply ICA with 2 components
ica = FastICA(n_components=2)
X_ica = ica.fit_transform(X_std)# Plot the results
plt.figure(figsize=(15, 5))plt.subplot(1, 3, 1)
for target, color in zip(range(len(target_names)), ['navy', 'turquoise', 'darkorange']):plt.scatter(X_lda[y == target, 0], X_lda[y == target, 1], color=color, alpha=.8, lw=2,label=target_names[target])
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('LDA')
plt.xlabel('LD1')
plt.ylabel('LD2')plt.subplot(1, 3, 2)
for target, color in zip(range(len(target_names)), ['navy', 'turquoise', 'darkorange']):plt.scatter(X_pca[y == target, 0], X_pca[y == target, 1], color=color, alpha=.8, lw=2,label=target_names[target])
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('PCA')
plt.xlabel('PC1')
plt.ylabel('PC2')plt.subplot(1, 3, 3)
for target, color in zip(range(len(target_names)), ['navy', 'turquoise', 'darkorange']):plt.scatter(X_ica[y == target, 0], X_ica[y == target, 1], color=color, alpha=.8, lw=2,label=target_names[target])
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('ICA')
plt.xlabel('IC1')
plt.ylabel('IC2')plt.show()

This code loads the Iris dataset, applies LDA, PCA, and ICA with 2 components each, and then plots the results using different colors for each class.

        请注意,在应用 PCA、ICA 或 LDA 之前标准化数据通常是一种很好的做法。标准化很重要,因为这些技术对输入要素的比例很敏感。标准化数据可确保每个要素的均值为 0,标准差为 1,这会将所有要素置于同一尺度上,并避免一个要素凌驾于其他要素之上。

        由于LDA是一种监督降维技术,因此它将类标签作为输入。相比之下,PCA和ICA是无监督技术,这意味着它们只使用输入数据,而不考虑类标签。

        LDA 的结果可以解释为将数据投影到最大化类分离的空间上,而 PCA 和 ICA 的结果可以解释为将数据投影到空间上,该空间分别捕获最重要的可变性或独立性来源。

图片来源:虹膜数据集上LDA,PCA和ICA的比较

        请注意,ICA仍然显示类别之间的分离,尽管不是其目的:这是因为类别已经在输入数据集中进行了相当排序。

        让我们把LDA放在一边,专注于PCA和ICA之间的差异 - 因为LDA是一种监督技术,专注于分离类别并强制实施最大的组件,而PCA和ICA专注于创建一个与输入矩阵形状相同的新矩阵。

        让我们看看 PCA 和 ICA 的 4 个组件的输出:

左:PCA的对图/右:ICA的对图(图片由作者提供)

        让我们也比较每个转换数据的相关矩阵:请注意,这两种方法都会导致不相关的向量(换句话说,转换后的数据特征是正交的)。这是因为它是PCA算法中的一个约束 - 每个新向量必须与以前的向量正交 - 并且是ICA算法的结果 - 这意味着原始数据集是已经混合在一起的独立信号,必须重建。

左:ICA的相关热图/右:PCA的相关热图(图片由作者提供)

        所以PCA和ICA似乎给出了具有相似性质的结果:这是因为以下2个原因:

  • 独立性在两种算法中都“编码”
  • 鸢尾花数据集表现出分离良好的类

这就是为什么我们需要另一个更适合ICA的例子。

四、另一个例子:

        让我们看另一个例子:我们首先生成一个合成数据集,其中包含两个独立的源,一个正弦波和一个方波,它们作为线性组合混合在一起以创建混合信号。

        实际的、真实的、独立的信号如下:

        它们混合在一起,作为 2 个线性组合:

        让我们看看PCA和ICA在这个新数据集上的表现:

        注意PCA如何创建一个新组件,该组件表现出很大的方差,作为输入的线性组合,但这绝对与原始数据不匹配:这确实不是PCA的目的。

        相反,ICA在恢复原始数据集方面表现非常好,与方差组成无关。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import FastICA# Generate a synthetic dataset with two independent sources
np.random.seed(0)
n_samples = 2000
time = np.linspace(0, 8, n_samples)s1 = np.sin(2 * time) # Source 1: sine wave
s2 = np.sign(np.sin(3 * time)) # Source 2: square waveS = np.c_[s1, s2]
S += 0.2 * np.random.normal(size=S.shape) # Add noise to the sources
S /= S.std(axis=0) # Standardize the sources# Mix the sources together to create a mixed signal
A = np.array([[0.5, 0.5], [0.2, 0.8]]) # Mixing matrix
X = np.dot(S, A.T) # Mixed signal# Standardize the data
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)# Use PCA to reduce the dimensionality of the data
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)# Use ICA to separate the sources from the mixed signal
ica = FastICA(n_components=2)
X_ica = ica.fit_transform(X) # Estimated sources# Plot the results
plt.figure()models = [X, S, X_pca, X_ica]
names = ['Observations (mixed signal)','True Sources','PCA features', 'ICA estimated sources']
colors = ['red', 'steelblue']for ii, (model, name) in enumerate(zip(models, names), 1):plt.subplot(4, 1, ii)plt.title(name)for sig, color in zip(model.T, colors):plt.plot(sig, color=color)plt.tight_layout()
plt.show()

五、结论

        PCA、LDA 和 ICA 算法可能看起来像是彼此的自定义版本,但它们实际上没有相同的目的。总结一下:

  • PCA旨在创建保持输入最大方差的新组件
  • LDA 旨在创建基于分类特征分隔集群的新组件
  • ICA 旨在检索在输入数据集中以线性组合混合在一起的原始要素

        希望您更好地了解这些算法之间的差异,并能够在将来快速识别您需要的算法。

相关文章:

【数据挖掘】PCA/LDA/ICA:A成分分析算法比较

一、说明 在深入研究和比较算法之前,让我们独立回顾一下它们。请注意,本文的目的不是深入解释每种算法,而是比较它们的目标和结果。 如果您想了解更多关于PCA和ZCA之间的区别,请查看我之前基于numpy的帖子: PCA 美白与…...

微服务模式:业务服务模式

无论是单体应用还是微服务,构建企业应用的业务逻辑/服务在更多方面上都有相似之处而不是差异。在两种方法中,都包含服务、实体、仓库等类。然而,也会发现一些明显的区别。在本文中,我将试图以概念性的方式强调这些区别&#xff0c…...

idea中创建请求基本操作

文章目录 说明效果创建GET请求没有参数带有参数带有环境变量带有动态参数 说明 首先通过###三个井号键来分开每个请求体,然后请求url和header参数是紧紧挨着的,请求参数不管是POST的body传参还是GET的parameter传参,都是要换行的,…...

springboot整合log4j2

1.排除springboot本身日志 2.添加log4j2 maven没有父项目 就必须指定version!! 3.配置application.yml文件 打印sql级别为debug 4.配置log4j2.xmllogging.configclasspath:log4j2.xml logging.level.com.zhkj.shoppingdebug #mybatis-plus.mapper-locations classpath*:/mapp…...

Linux输出内容到指定文件

1. 记录终端输出至文本文件 1.1 解决方案1:利用>和>>命令 区别: > 是把输出转向到指定的文件。注意:如文件已存在的话会重新写入,文件原内容不会保留。 >> 是把输出附加到文件的后面,文件原内容会…...

mysql主从同步怎么跳过错误

今天介绍两种mysql主从同步跳过错误的方法: 一、两种方法介绍 1、跳过指定数量的事务: mysql>slave stop; mysql>SET GLOBAL SQL_SLAVE_SKIP_COUNTER 1 #跳过一个事务 mysql>slave start2、修改mysql的配置文件,通过slav…...

【论文阅读】DEPIMPACT:反向传播系统依赖对攻击调查的影响(USENIX-2022)

Fang P, Gao P, Liu C, et al. Back-Propagating System Dependency Impact for Attack Investigation[C]//31st USENIX Security Symposium (USENIX Security 22). 2022: 2461-2478. 攻击调查、关键边、入口点 开源:GitHub - usenixsub/DepImpact 目录 1. 摘要2. 引…...

Nginx 功能及配置详解

一、Nginx概述 Nginx是一款高性能的HTTP和反向代理服务器,也是一款IMAP/POP3/SMTP代理服务器。Nginx被广泛应用于服务端的Web开发,主要用于提供高效、稳定的网页访问服务。Nginx的主要特点包括:高并发连接处理能力、稳定性高、配置灵活和功能…...

CSS 瀑布流效果效果

示例 <!DOCTYPE html> <html lang="cn"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>瀑布流效果</title><style>…...

Python 进阶(一):PyCharm 下载、安装和使用

❤️ 博客主页&#xff1a;水滴技术 &#x1f338; 订阅专栏&#xff1a;Python 入门核心技术 &#x1f680; 支持水滴&#xff1a;点赞&#x1f44d; 收藏⭐ 留言&#x1f4ac; 文章目录 一、下载 PyCharm二、安装 PyCharm三、创建项目四、界面汉化五、实用技巧5.1、使用快捷…...

微信小程序使用ECharts的示例详解

目录 安装 ECharts 组件使用 ECharts 组件图表延迟加载 echarts-for-weixin 是 ECharts 官方维护的一个开源项目&#xff0c;提供了一个微信小程序组件&#xff08;Component&#xff09;&#xff0c;我们可以通过这个组件在微信小程序中使用 ECharts 绘制图表。 echarts-fo…...

微信小程序生成二维码(weapp-qrcode)可添加logo

插件 npm 地址&#xff1a;https://www.npmjs.com/package/weapp-qrcode 插件 GitHub 地址&#xff1a;https://github.com/yingye/weapp-qrcode/tree/master 一、引入 1、根据 GitHub 指引将 weapp-qrcode 放到本地 uitl 文件夹下&#xff1b; 2、创建 canvas <canvas c…...

【云原生】Docker容器资源限制(CPU/内存/磁盘)

目录 ​编辑 1.限制容器对内存的使用 2.限制容器对CPU的使用 3.block IO权重 4.实现容器的底层技术 1.cgroup 1.查看容器的ID 2.在文件中查找 2.namespace 1.Mount 2.UTS 3.IPC 4.PID 5.Network 6.User 1.限制容器对内存的使用 ⼀个 docker host 上会运⾏若⼲容…...

内核链表在用户程序中的移植和使用

基础知识 struct list_head {struct list_head *next, *prev; }; 初始化&#xff1a; #define LIST_HEAD_INIT(name) { (name)->next (name); (name)->prev (name);} 相比于下面这样初始化&#xff0c;前面初始化的好处是&#xff0c;处理链表的时候&#xff0c;不…...

使用C#基于ComPDFKit SDK快速构建PDF阅读器

在当今世界&#xff0c;Windows 应用程序对我们的工作至关重要。随着处理 PDF 文档的需求不断增加&#xff0c;将 ComPDFKit PDF 查看和编辑功能集成到您的 Windows 应用程序或系统中&#xff0c;可以极大地为您的用户带来美妙的体验。 在本博客中&#xff0c;我们将首先探索集…...

el-tabel导出excel表格

1、安装插件 npm install file-saver --save npm install xlsx --save 2、引入插件 import FileSaver from "file-saver"; import * as XLSX from xlsx; 3、在tabel中添加ref属性和导出方法 4、添加方法 exportExcel (excelName) {try {const $e this.$refs[repo…...

双击start.bat文件闪退,运行报错“unable to access jarfile”

问题&#xff1a;电脑运行“start.bat”文件&#xff0c;无反应&#xff0c;闪退&#xff0c;管理员身份运行报错“unable to access jarfile” 解决思路&#xff1a; 1、由于该项目运行需要jdk环境&#xff0c;检查jdk版本需要是1.8.0_251版本 通过在 cmd 命令行输入java -v…...

大数据Flink(五十一):Flink的引入和Flink的简介

文章目录 Flink的引入和Flink的简介 一、Flink的引入 1、第1代——Hadoop MapReduce...

c语言的数据类型 -- 与GPT对话

1 c语言的数据类型 在C语言中,数据类型用于定义变量的类型和存储数据的方式。C语言支持多种数据类型,包括基本数据类型和派生数据类型。以下是C语言中常见的数据类型: 基本数据类型(Primary Data Types): int: 整数类型,通常表示带符号的整数。char: 字符类型,用于存储…...

Truffle 进行智能合约测试

其他依赖 node.js、 由于是利用npm进行&#xff0c;所以先设置国内镜像源。去网上搜 1.安装truffle npm install truffle -gtruffle --version 安装完其他项目依赖&#xff0c;能够产生一下效果 2.项目创建 创建test文件夹 mkdir test进入test cd test初始化项目 truffle …...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...