C++OpenCV(5):图像模糊操作(四种滤波方法)
🔆 文章首发于我的个人博客:欢迎大佬们来逛逛
🔆 OpenCV项目地址及源代码:点击这里
文章目录
- 图像模糊操作
- 均值滤波
- 高斯滤波
- 中值滤波
- 双边滤波
图像模糊操作
关于图片的噪声:指的是图片中存在的不必要或者多余的干扰数据。
Smooth与Blur是图像处理中最简单和常用的操作之一。
经过这两种操作我们便可以实现消除噪声的作用。
Smooth与Blur操作原理是数学的卷积运算,根据不同卷积运算公式,划分了多种图像滤波方式图像滤波:指的是在尽量保留图像特征的条件下对目标图像得噪声进行抑制。
均值滤波
均值滤波指的是取周围像素计算出来的平均值然后赋给目标像素。然后依次对每一个像素值进行如上的操作。
均值滤波可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能。
blur
可以实现均值滤波。
void blur( InputArray src, OutputArray dst,Size ksize, Point anchor = Point(-1,-1),int borderType = BORDER_DEFAULT );
/*******************************************************************
* src: 输入图像
* dst: 输出图像
* ksize: 内核大小 如上我们的大小是(3,3)
* anchor: 锚点
* 默认Point(-1,-1):锚点在核中心
* borderType: 外部像素边界模式(一般不管)
*********************************************************************/
//均值模糊void testBlur() {cv::blur(mt, saves["blur"], cv::Size(KERNEL, KERNEL));}
高斯滤波
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。
高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
一阶与二阶高斯分布,其中二阶高斯分布是一个是一个三维的正态分布的图像:
可以观察到正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。
使用二阶高斯分布来消除噪声,模拟计算操作,其中 x x x 与 y y y 指的是图像的坐标,由于 σ \sigma σ 未知,并且其他都是已知的,我们便可以计算出每一个点对应的二阶高斯值。
- 取一个 σ \sigma σ 值,对于每一个位置计算出对应的二阶高斯值。
- 计算出权重总和 s u m sum sum,由于权重之和必须等于1,因此每个点再除以 s u m sum sum ,就可以得到最终的权值矩阵(右三)
- 对于每一个位置的像素值(右二)乘以对应的权值就可以得到高斯模糊后的值(右一)。
高斯模糊函数:GaussianBlur
void GaussianBlur( InputArray src, OutputArray dst, Size ksize,double sigmaX, double sigmaY = 0,int borderType = BORDER_DEFAULT );
/*******************************************************************
* src: 输入图像
* dst: 输出图像
* ksize: 内核大小
* x,y必须是整数,并且为奇数
* sigmaX: X方向滤波系数
* sigmaY: Y方向滤波系数
* borderType: 外部像素边界模式(一般不管)
*********************************************************************/
案例代码:
//高斯模糊void testGaussianBlur() {cv::GaussianBlur(mt, saves["GaussianBlur"], cv::Size(KERNEL, KERNEL), 3, 3);}
可以观察到高斯模糊的效果比均值模糊的效果好。
中值滤波
中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。
g = median [ ( x − 1 , y − 1 ) + f ( x , y − 1 ) + f ( x + 1 , y − 1 ) + f ( x − 1 , y ) + f ( x , y ) + f ( x + 1 , y ) + f ( x − 1 , y + 1 ) + f ( x , y + 1 ) + f ( x + 1 , y + 1 ) ] g=\operatorname{median}[(x-1, y-1)+f(x, y-1)+f(x+1, y-1)+f(x-1, y)+f(x, y)+f(x+1, y)+f(x-1, y+1)+f(x, y+1)+f(x+1, y+1)] g=median[(x−1,y−1)+f(x,y−1)+f(x+1,y−1)+f(x−1,y)+f(x,y)+f(x+1,y)+f(x−1,y+1)+f(x,y+1)+f(x+1,y+1)]
对对椒盐噪声有很好的抑制作用.
它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)
API:medianBlur
void medianBlur( InputArray src, OutputArray dst, int ksize );
/*******************************************************************
* src: 输入图像
* dst: 输出图像
* ksize: 内核大小
* 大小必须是大于1而且必须是奇数
*********************************************************************/
//中值模糊
void testMedianBlur() {cv::medianBlur(mt, saves["median"], KERNEL);
}
双边滤波
上面三种降噪方法容易模糊图片的边缘细节,对于高频细节的保护效果并不明显。
双边滤波可以很好的边缘保护,即可以在去噪的同时,保护图像的边缘特性。
w ( i , j , k , l ) = exp ( − ( i − k ) 2 + ( j − l ) 2 2 σ d 2 − ∥ f ( i , j ) − f ( k , l ) ∥ 2 2 σ r 2 ) w(i, j, k, l)=\exp \left(-\frac{(i-k)^{2}+(j-l)^{2}}{2 \sigma_{d}^{2}}-\frac{\|f(i, j)-f(k, l)\|^{2}}{2 \sigma_{r}^{2}}\right) w(i,j,k,l)=exp(−2σd2(i−k)2+(j−l)2−2σr2∥f(i,j)−f(k,l)∥2)
函数API:bilateralFilter
void bilateralFilter( InputArray src, OutputArray dst, int d,double sigmaColor, double sigmaSpace,int borderType = BORDER_DEFAULT );
/*******************************************************************
* src: 输入图像
* dst: 输出图像
* d: 滤波过程中每个像素邻域的直径
* sigmaColor: 颜色空间滤波器的标准差值
* 参数越大表明该像素领域内有越多的颜色被混合到一起
* sigmaSpace: 空间间坐标中滤波器的标准差值
* borderType: 外部像素边界模式(一般不管)
*********************************************************************/
void testBilateralFilter() {cv::bilateralFilter(mt, saves["bilateral"], KERNEL, KERNEL, KERNEL);}
参考:
bilateral filter双边滤波器的通俗理解_AI吃大瓜的博客-CSDN博客
均值滤波
高斯滤波_百度百科
相关文章:

C++OpenCV(5):图像模糊操作(四种滤波方法)
🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 🔆 OpenCV项目地址及源代码:点击这里 文章目录 图像模糊操作均值滤波高斯滤波中值滤波双边滤波 图像模糊操作 关于图片的噪声:指的是图片中存在的不必要或者多余的干扰数…...
关于质数筛——数论
埃式筛法 #include <bits/stdc.h> using namespace std; bool vis[100000010]; //标记数组 int n; int main(){scanf("%d",&n);vis[0]vis[1]1;for(int i2;i*i<n;i){ //优化1 if(vis[i]!1){for(int ji*i;j<n;ji){ //优化2 vis[j]1; //0是质数&#…...

Spring Boot 应用程序生命周期扩展点妙用
文章目录 前言1. 应用程序生命周期扩展点2. 使用场景示例2.1 SpringApplicationRunListener2.2 ApplicationEnvironmentPreparedEvent2.3 ApplicationPreparedEvent2.4 ApplicationStartedEvent2.5 ApplicationReadyEvent2.6 ApplicationFailedEvent2.7 ApplicationRunner 3. 参…...

【Nodejs】操作mongodb数据库
1.简介 Mongoose是一个让我们可以通过Node来操作MongoDB的模块。Mongoose是一个对象文档模型(ODM)库,它对Node原生的MongoDB模块进行了进一步的优化封装,并提供了更多的功能。在大多数情况下,它被用来把结构化的模式应用到一个MongoDB集合,并…...

SQL-每日一题【619.只出现一次的最大数字】
题目 MyNumbers 表: 单一数字 是在 MyNumbers 表中只出现一次的数字。 请你编写一个 SQL 查询来报告最大的 单一数字 。如果不存在 单一数字 ,查询需报告 null 。 查询结果如下例所示。 示例 1: 示例 2: 解题思路 1.题目要求我…...

紫光FPGA试用--软件篇
目录 一 软件安装启动 二 如何打开IP核?查看/修改现有IP核参数? 三 如何定义引脚? 四 如何下载code进入FPGA? 1. 下载到FPGA芯片内: 2.下载到外部FLASH中 五 如何进入在线调试模式,调试步骤 操作步骤ÿ…...

PDF添加水印以及防止被删除、防止编辑与打印
方法记录如下: 1、添加水印; 2、打印输出成一个新的pdf; 3、将pdf页面输出成一张张的图片:(福昕pdf操作步骤如下) 4、将图片组装成一个新的pdf:(福昕pdf操作步骤如下)…...
el-tree转换为表格样式的记录2
上一篇文章记录的是自己将树状数据转换为表格形式。但是出现了一个小bug,点击子节点时候会选中父节点,这个是正常需求没问题。但是我点击父节点时候取消所有子节点,父节点 选择也会失去,这是我不想要执行的。例如一个页面里面有主…...
MS1826B HDMI 1进4出 视频拼接芯片
MS1826B 是一款多功能视频处理器,包含 4 路独立 HDMI 音视频输出通道、1 路 HDMI 音视 频输入通道以及 1 路独立可配置为输入或者输出的 SPDIF、I2S 音频信号。支持 4 个独立的字库定 制型 OSD;可处理隔行和逐行视频或者图形输入信号;有四路独…...
Spring之注解
SpringIOC注解 组件添加标记注解: Component:该注解标记类表示该类为一个普通类,表示为IOC中的一个组件bean Repository:该注解用于将数据访问层(Dao层)的类标识为Spring中的Bean Service&…...

【UniApp开发小程序】悬浮按钮+出售闲置商品+商品分类选择【基于若依管理系统开发】
文章目录 界面效果界面实现悬浮按钮实现商品分类选择界面使元素均匀分布 闲置商品描述信息填写界面价格校验 界面效果 【悬浮按钮】 【闲置商品描述信息填写界面】 【商品分类选择界面】 【分类选择完成】 界面实现 悬浮按钮实现 悬浮按钮漂浮于页面之上,等页面…...

一百三十三、Hive——Hive外部表加载含有JSON格式字段的CSV文件数据
一、目标 在Hive的ODS层建外部表,然后加载HDFS中的CSV文件数据 注意:CSV文件中含有未解析的JSON格式的字段数据,并且JSON字段中还有逗号 二、第一次建外部表,直接以,分隔行字段,结果JSON数据只显示一部分…...

rust gtk 桌面应用 demo
《精通Rust》里介绍了 GTK框架的开发,这篇博客记录并扩展一下。rust 可以用于桌面应用开发,我还挺惊讶的,大学的时候也有学习过 VC,对桌面编程一直都很感兴趣,而且一直有一种妄念,总觉得自己能开发一款很好…...

《嵌入式 - 工具》J-link读写MCU内部Flash
1 J-Link简介 J-Link是SEGGER公司为支持仿真ARM内核芯片推出的JTAG仿真器。配合IAR EWAR,ADS,KEIL,WINARM,RealView等集成开发环境支持所有ARM7/ARM9/ARM11,Cortex M0/M1/M3/M4, Cortex A5/A8/A9等内核芯片的仿真,是学…...
算法练习-LeetCode1071. Greatest Common Divisor of Strings
题目地址:LeetCode - The Worlds Leading Online Programming Learning Platform Description: For two strings s and t, we say "t divides s" if and only if s t ... t (i.e., t is concatenated with itself one or more times). Given two strin…...
Nuget不小心用sudo下载后怎么在user里使用
问题发生 协同开发的过程中,同时在dotnet里面添加了nuget的grpc包,在不清楚的情况下执行自动生成脚本,下载nuget包失败,说是权限不足,于是就使用了sudo进行自动生成,结果在下一次重新打包的过程中ÿ…...
软件测试技能大赛环境搭建及系统部署报告
环境搭建及系统部署报告 环境搭建与配置过程(附图) JDK环境变量配置截图 【截取JDK环境变量配置截图】 查看JDK版本信息截图 【截取使用命令查看JDK版本信息截图,必须截取查看信息成功截图】 root账号成功登录MySQL截图 【截取使用root账…...

浅谈现代通信技术
目录 1.传统通信方法 2.传统通信方式的缺点 3.现代通信技术 4.现代通信技术给人类带来的福利 1.传统通信方法 传统通信方法指的是在数字化通信之前使用的传统的通信方式。以下是一些常见的传统通信方法: 1. 书信:通过邮件或快递等方式发送纸质信件。这…...

windows环境下adb 下载和配置,连接手机。
ADB下载地址: https://adbdownload.com/ 选择下载windows系统的。 下载后解压,查看adb.exe所在的目录,如下 这里将路径复制下来:D:\ADB 配置到系统环境变量中。 然后再打开cmd,输入adb version查看版本。 出现…...

[STL]list使用介绍
[STL]list使用 注:本文测试环境是visual studio2019。 文章目录 [STL]list使用1. list介绍2. 构造函数3. 迭代器相关函数begin函数和end函数rbegin函数和rend函数 4. 容量相关函数empty函数size函数 5. 数据修改函数push_back函数和pop_back函数push_front函数和pop…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...