当前位置: 首页 > news >正文

图像滤波器

图像噪声
        • 图像噪声是图像在获取或是传输过程中受到随机信号干扰,妨碍人们对图像理解及分析处理
的信号。
        • 图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量,图像在传输过程中产
生图像噪声的主要因素是所用的传输信道受到了噪声的污染。
高斯噪声
高斯噪声(Gaussian noise)是指它的概率密度函数服从高斯分布的一类噪声。
特别的,如果一个噪声,它的幅度分布服从高斯分布,而它的任意两个采样样本之间不相关,则
称它为高斯白噪声。
必须区分高斯噪声和白噪声两个不同的概念。高斯噪声是指噪声的概率密度函数服从高斯分布,
白噪声是指噪声的任意两个采样样本之间不相关,两者描述的角度不同。白噪声不必服从高斯分
布,高斯分布的噪声不一定是白噪声。
产生原因:
1)图像传感器在拍摄时不够明亮、亮度不够均匀;
2)电路各元器件自身噪声和相互影响;
3)图像传感器长期工作,温度过高

 

椒盐噪声
椒盐噪声又称为脉冲噪声,它是一种随机出现的白点或者黑点。
椒盐噪声 = 椒噪声 (pepper noise)+ 盐噪声(salt noise)。 椒盐噪声的值为0(椒)或者255(盐)。
前者是低灰度噪声,后者属于高灰度噪声。一般两种噪声同时出现,呈现在图像上就是黑白杂点。
对于彩色图像,也有可能表现为在单个像素BGR三个通道随机出现的255或0。
如果通信时出错,部分像素的值在传输时丢失,就会发生这种噪声。
椒盐噪声的成因可能是影像讯号受到突如其来的强烈干扰而产生等。例如失效的感应器导致像素值
为最小值,饱和的感应器导致像素值为最大值
要点总结:
1.图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少
的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。
2.消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和
中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的滤波器
就能够减弱噪声的影响。
3.平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。空间域的
平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,
邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此
需合理选择邻域的大小。
4.关于滤波器,一种形象的比喻法是:我们可以把滤波器想象成一个包含加权系数的窗口,当使用这个滤
波器平滑处理图像时,就把这个窗口放到图像之上,透过这个窗口来看我们得到的图像。
滤波目的:
1、消除图像中混入的噪声。2、为图像识别抽取出图像特征。
滤波要求:
1、不能损坏图像轮廓及边缘 。2、图像视觉效果应当更好。

均值滤波
均值滤波,是图像处理中最常用的手段,从频率域观点来看均值滤波是一种低通滤波器,高频信号将
会去掉,因此可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能。理想的均值滤波是用每个像
素和它周围像素计算出来的平均值替换图像中每个像素。

 

从左到右从上到下计算图像中的每个像素,最终得到处理后的图像。
均值滤波可以加上两个参数,即迭代次数,Kernel数据大小。
一个相同的Kernel,但是多次迭代就会效果越来越好。
同样,迭代次数相同,Kernel矩阵越大,均值滤波的效果就越明显。

 

注意 ,这个kernel加权求和之后还得除以9才是均值,用均值替换蓝色中心像素
优点:算法简单,计算速度快;
缺点:降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分
中值滤波
中值滤波也是消除图像噪声最常见的手段之一,特别是消除椒盐噪声,中值滤波的效果要比均值滤
波更好。中值滤波跟均值滤波唯一不同是,不是用均值来替换中心每个像素,而是将周围像素和中
心像素排序以后,取中值。
一个3X3大小的中值滤波如下

 

优点:抑制效果很好,画面的清析度基本保持;
缺点:对高斯噪声的抑制效果不是很好
最大最小值滤波
最大最小值滤波是一种比较保守的图像处理手段,与中值滤波类似,首先要排序周围像素和中心像
素值,然后将中心像素值与最小和最大像素值比较,如果比最小值小,则替换中心像素为最小值,
如果中心像素比最大值大,则替换中心像素为最大值。
一个Kernel矩阵为3X3的最大最小值滤波如下:

 

拓展 -- 引导滤波
在引导滤波的定义中,用到了局部线性模型。
该模型认为,某函数上一点与其邻近部分的点成线性关系,一个复杂的函数就可以用很多局部
的线性函数来表示,当需要求该函数上某一点的值时,只需计算所有包含该点的线性函数的值
并做平均即可。这种模型,在表示非解析函数上,非常有用。

 

图像增强
        有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特
征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富
信息量,加强图像判读和识别效果,满足某些特殊分析的需要。
图像增强可以分为两种:
点处理技术。只对单个像素进行处理。
领域处理技术。对像素点及其周围的点进行处理,即使用卷积核
1. 线性变换
图像增强线性变换主要对图像的对比度和亮度进行调整:
 
参数 a 影响图像的对比度,参数 b 影响图像的亮度,具体可分为以下几种情况:
a>1: 增强图像的对比度,图像看起来更加清晰
a<1: 减小了图像的对比度, 图像看起来变模糊
a=1 and b≠0:图像整体的灰度值上移或者下移,也就是图像整体变亮或者变暗,不会改变图像的对比
度,b>0时图像变亮,b<0时图像变暗
2. 分段线性变换
即对处于某个感兴趣的区域的x,将其对比度系数a增大或减小,从而增大或减小这个区域的对比度
3. 对数变换
对数变换将图像的低灰度值部分扩展,将其高灰度值部分压缩,以达到强调图像低灰度部分的目的;
同时可以很好的压缩像素值变化较大的图像的动态范围,目的是突出我们需要的细节。

 

4. 幂律变换/伽马变换
幂律变换主要用于图像的校正,对漂白的图片或者是过黑的图片进行修正。

 

 

根据 γ的大小,主要可分为以下两种情况:
γ > 1: 处理漂白的图片,进行灰度级压缩
γ < 1: 处理过黑的图片,对比度增强,使得细节看的更加清楚
图像增强常用方法(包括但不限于):
1. 翻转、平移、旋转、缩放
2. 分离单个r、g、b三个颜色通道
3. 添加噪声
4. 直方图均衡化
5. Gamma变换
6. 反转图像的灰度
7. 增加图像的对比度
8. 缩放图像的灰度
9. 均值滤波
10. 中值滤波
11. 高斯滤波

 

相关文章:

图像滤波器

图像噪声 • 图像噪声是图像在获取或是传输过程中受到随机信号干扰&#xff0c;妨碍人们对图像理解及分析处理 的信号。 • 图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量&#xff0c;图像在传输过程中产 生图像噪声的主要因素是所用的传输信道受到了噪声…...

【每日一题】2569. 更新数组后处理求和查询

【每日一题】2569. 更新数组后处理求和查询 2569. 更新数组后处理求和查询题目描述解题思路 2569. 更新数组后处理求和查询 题目描述 给你两个下标从 0 开始的数组 nums1 和 nums2 &#xff0c;和一个二维数组 queries 表示一些操作。总共有 3 种类型的操作&#xff1a; 操作…...

PLC的高端版本通常具有以下特点:

高速处理能力&#xff1a;高端PLC通常具有更快的处理速度和更高的运行频率&#xff0c;可以处理更复杂的控制逻辑和更多的输入/输出信号。 大容量存储&#xff1a;高端PLC通常具有更大的存储容量&#xff0c;可以保存更多的程序和数据&#xff0c;以满足更复杂的应用需求。 多种…...

Scrum敏捷开发项目管理和产品研发管理培训- Leangoo领歌

Scrum是目前运用最为广泛的敏捷开发方法&#xff0c;是一个轻量级的项目管理和产品研发管理框架。 这是一个两天的实训课程&#xff0c;面向研发管理者、项目经理、产品经理、研发团队等&#xff0c;旨在帮助学员全面系统地学习Scrum和敏捷开发, 帮助企业快速启动敏捷实施。 …...

爬虫小白-如何辨别是否有cookie反爬案例

目录 一、Cookie介绍二、cookie生成来源区分查找三、如何判断是否有cookie反爬四、来自服务器生成的cookie反爬解决方法五、来自js生成的cookie反爬解决方法一、Cookie介绍 先推荐该篇文章简单了解Cookie、Session、Token、JWT1、cookie的类型:会话cookie和持久cookie;其唯一…...

机器人状态估计:robot_localization 功能包简介与安装

机器人状态估计&#xff1a;robot_localization 功能包简介与参数配置 前言功能包简介安装使用ubuntu软件源安装使用源码安装 前言 移动机器人的状态估计需要用到很多传感器&#xff0c;因为对单一的传感器来讲&#xff0c;都存在各自的优缺点&#xff0c;所以需要一种多传感器…...

RNN架构解析——GRU模型

目录 GRU模型实现优点和缺点 GRU模型 实现 优点和缺点...

【LeetCode】141.环形链表

题目 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&#…...

nodejs+vue+elementui汽车销售网站

前端技术&#xff1a;nodejsvueelementui,视图层其实质就是vue页面&#xff0c;通过编写vue页面从而展示在浏览器中&#xff0c;编写完成的vue页面要能够和控制器类进行交互&#xff0c;从而使得用户在点击网页进行操作时能够正常。 可以设置中间件来响应 HTTP 请求。 Express …...

spring boot整合kaptcha验证码

引入依赖 <dependency><groupId>com.github.penggle</groupId><artifactId>kaptcha</artifactId><version>2.3.2</version> </dependency>创建验证码生成配置类 KaptchaConfig.java Configuration public class KaptchaConf…...

【Linux下6818开发板(ARM)】在液晶屏上显示RGB颜色和BMP图片

(꒪ꇴ꒪ ),hello我是祐言博客主页&#xff1a;C语言基础,Linux基础,软件配置领域博主&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff01;送给读者的一句鸡汤&#x1f914;&#xff1a;集中起来的意志可以击穿顽石!作者水平很有限&#xff0c;如果发现错误&#x…...

React的hooks---useLayoutEffect

useLayoutEffect 与 useEffect 类似&#xff0c;与 useEffect 在浏览器 layout 和 painting 完成后异步执行 effect 不同的是&#xff0c;它会在浏览器布局 layout 之后&#xff0c;painting 之前同步执行 effect useLayoutEffect 的执行时机对比如下&#xff1a; import Rea…...

北京创业孵化器汇总

北京创业孵化器汇总 1 创客总部实验室技术孵化平台 人工智能 海淀区中关村大街18号B座0909室 2 中孵高科 医药健康 经济技术开发区科创十四街99号D座9层 3 九州众创孵化器 医药健康 大兴区广平大街9号6幢等2幢 4 北京大学人工智能产业化孵化平台 国家级/市级 人工智能 中关村…...

电信软件的过去、现在和未来:推动核心网发展的关键力量

目录 导语&#xff1a;过去&#xff1a;从基础功能到增强服务现在&#xff1a;软件定义网络和智能化运营SDNNFV 未来&#xff1a;5G和物联网的挑战与机遇结束语 导语&#xff1a; 电信软件是支撑电信核心网运营的重要组成部分&#xff0c;它们在过去几十年中经历了巨大的变革。…...

2023年全国程序员薪酬排行天梯榜

文章目录 ⭐️ 2023年全国程序员薪酬排行天梯榜 在过去很长的一段时间内&#xff0c;网上总有一个声音&#xff1a;“大厂裁员”、“程序员内卷严重”、“程序员人员过盛”、“35岁中年危机”、“码农吃的青春饭”、“互联网寒冬” 等等等等。 讲道理&#xff0c;我对这种人为的…...

设计模式-工厂模式

定义 工厂模式是用来创建对象的一种最常用的设计模式&#xff0c;不暴露创建对象的具体逻辑&#xff0c;而是将将逻辑封装在一个函数中&#xff0c;那么这个函数就可以被视为一个工厂 其就像工厂一样重复的产生类似的产品&#xff0c;工厂模式只需要我们传入正确的参数&#…...

HummerRisk V1.3.0 发布

HummerRisk V1.3.0发布&#xff1a; 大家好&#xff0c;HummerRisk 1.3.0和大家见面了&#xff0c;在这个版本中我们继续在多云接入管理、多云检测方式、云资源态势方面提供新的能力&#xff0c;并增加了新的镜像仓库支持类型&#xff0c;并优化了云的区域选择、优化规则组内容…...

SkyWalking链路追踪中Trace概念以及Trace与span的关系

基本概念 在SkyWalking链路追踪中&#xff0c;Trace&#xff08;追踪&#xff09;是指一个请求或者一个操作从开始到结束的完整路径。它涵盖了分布式系统中所有相关组件的调用关系和性能信息。 具体来说&#xff0c;Trace包含了一系列的span&#xff08;跨度&#xff09;&…...

美容店预约小程序制作教程详解

现在&#xff0c;制作一个专属于美容店的预约小程序不再需要编程经验&#xff0c;通过乔拓云网提供的后台管理系统&#xff0c;你可以轻松地完成整个制作过程。下面&#xff0c;我将为你详细介绍如何DIY一个美容店预约小程序。 首先&#xff0c;登录乔拓云网的后台管理系统&…...

什么是内存泄漏及如何防护内存泄漏

目录 前言 什么是内存泄漏示例一示例二特殊版本 总结/结尾 前言 最近阅读量很低啊(⁠ ⁠≧⁠Д⁠≦⁠) 什么是内存泄漏 内存泄漏&#xff08;Memory Leak&#xff09;指在程序运行过程中&#xff0c;分配的内存空间在不再使用后未被正确释放或回收&#xff0c;导致这部分内存…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...