视频转化为图片或灰度视频
1.视频转化为图片
import cv2video_path=r"D:\Dataset\video/7.mp4"
capture=cv2.VideoCapture(video_path)
# print(capture.get(5))if capture.isOpened():ret,img=capture.read()index=0while ret:if index%20==0:imgid=r"D:\Dataset\image/6/"+"%07d"%index+".jpg"print(index,ret)cv2.imwrite(imgid,img)ret,img=capture.read()index=index+1
capture.release()
2.视频转化为灰度视频
import cv2
'''
这是一个将彩色视频装换成灰度视频的代码块
'''
cap = cv2.VideoCapture(r'D:\Dataset/video/1.mp4')fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
out = cv2.VideoWriter(r'D:\Dataset\video/1-1.mp4',fourcc, 30.0, (720,1280),False)while(cap.isOpened()):ret, frame = cap.read()if ret==True:frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)out.write(frame)cv2.imshow('frame',frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakelse:break
cap.release()
out.release()
cv2.destroyAllWindows()
3.图片转化为视频
import numpy as np
import cv2
size = (432,288)#这个是图片的尺寸,一定要和要用的图片size一致
#完成写入对象的创建,第一个参数是合成之后的视频的名称,第二个参数是可以使用的编码器,第三个参数是帧率即每秒钟展示多少张图片,第四个参数是图片大小信息
videowrite = cv2.VideoWriter(r'F:\test.mp4',-1,20,size)#20是帧数,size是图片尺寸
img_array=[]
for filename in [r'F:\Picture\{0}.jpg'.format(i) for i in range(100000)]:#这个循环是为了读取所有要用的图片文件img = cv2.imread(filename)if img is None:print(filename + " is error!")continueimg_array.append(img)
for i in range(100000):#把读取的图片文件写进去videowrite.write(img_array[i])
videowrite.release()
print('end!')
4.打开摄像头
import cv2
import numpy as np
def video_demo():capture = cv2.VideoCapture(0,cv2.CAP_DSHOW)#0为电脑内置摄像头while(True):ret, frame = capture.read()#摄像头读取,ret为是否成功打开摄像头,true,false。 frame为视频的每一帧图像frame = cv2.flip(frame, 1)#摄像头是和人对立的,将图像左右调换回来正常显示。cv2.imshow("video", frame)c = cv2.waitKey(50)if c == 27:break
video_demo()
cv2.destroyAllWindows()
相关文章:
视频转化为图片或灰度视频
1.视频转化为图片 import cv2video_pathr"D:\Dataset\video/7.mp4" capturecv2.VideoCapture(video_path) # print(capture.get(5))if capture.isOpened():ret,imgcapture.read()index0while ret:if index%200:imgidr"D:\Dataset\image/6/""%07d&quo…...
【动态规划刷题 2】使⽤最⼩花费爬楼梯 解码⽅法
使⽤最⼩花费爬楼梯 746 . 使用最小花费爬楼梯 链接: 746 . 使用最小花费爬楼梯 给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 …...
Python的基本语法
“有人说,写python就像是坐在一个没有安全带的车上, 我认为这个说法很欠妥当, 应该是一辆没有外壳和座椅, 只有发动机和轮子的车, 并且车上摆满了轮子” python既然是作为一个工具,那么就不需要去深入…...
Kubernetes那点事儿——存储之存储卷
Kubernetes那点事儿——存储之存储卷 前言一、K8s数据卷一、临时存储卷emptyDir二、节点存储卷hostPath三、网络存储NFS 前言 在K8s中用Volume为容器提供了外部的存储能力。 Pod需要设置卷来源(spec.volume)和挂载点(spec.containers.volumeM…...
Go语言中‘String’包中的‘Cut‘函数的实现
Go语言中‘String’包中的’Cut’函数的实现 Cut函数用于在字符串**‘s’中查找子串’sep’,并将字符串’s’在子串 ‘sep’ 第一次出现的位置分割成两部分:before和after** package main import("fmt" "strings" ) func main(…...
【JAVASE】顺序和选择结构
⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:浅谈Java 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 顺序和选择 1. 顺序结构2. 分支结构2.1 …...
Oracle恢复删除的数据
不下心删除了生产库的数据或者不小心删除了一部分数据,如何恢复找回。 Oracle恢复删除数据的方法 方案一 利用oracle提供的闪回方法进行数据恢复,适用于delete删除方式 首先获取删除数据的时间点: select * from v$sql where sql_text l…...
(无人机方向)ros小白之键盘控制无人机(终端方式)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一:配置pycharm的ros开发环境二:核心代码讲解三 效果演示XTDrone 四 完整代码 前言 ubuntu 18.04 pycharm ros melodic 做一个在终端中…...
【python学习笔记】argparse --- 命令行选项、参数和子命令解析器
argparse 是 Python 的标准库中的一个模块,用于解析命令行参数。它提供了一种简单而灵活的方式来处理命令行输入,并生成易于使用的帮助文档。 使用 argparse 模块可以轻松地定义命令行参数和选项,并自动生成用法帮助和错误消息。示例&#x…...
【Java框架】RPC远程调用
RPC架构 一、RPC概述 RPC(Remote Procedure Call)叫作远程过程调用,它是利用网络从远程计算机上请求服务,可以理解为把程序的一部分放在其他远程计算机上执行。通过网络通信将调用请求发送至远程计算机后,利用远程计…...
云原生全栈体系(一)
云平台核心 第一章 为什么用云平台 环境统一按需付费即开即用稳定性强 一、国内常见云平台 阿里云、百度云、腾讯云、华为云、青云… 二、国外常见云平台 亚马逊 AWS、微软 Azure … 三、公有云 购买云服务商提供的公共服务器 公有云是最常见的云计算部署类型。公有云资…...
【【51单片机直流电机调速】】
学会电机调速,掌握中国速度 PWM的生成方法 先用户设定一个比较值,然后计数器定时自增。 当计数器<比较值,输出0 当计数器>比较值,输出1 main.c #include <REGX52.H> #include"delay.h" #include"…...
【Spring Boot】
目录 🍪1 Spring Boot 的创建 🎂2 简单 Spring Boot 程序 🍰3 Spring Boot 配置文件 🍮3.1 properties 基本语法 🫖3.2 yml 配置文件说明 🍭3.2.1 yml 基本语法 🍩3.3 配置文件里的配置类…...
使用docker 部署自己的chatgpt
直接docker部署 docker run --name chatgpt-web -d -p 3002:3002 --env OPENAI_API_KEYyour_api_key chenzhaoyu94/chatgpt-web:latestDocker compose部署 version: 3services:app:image: chenzhaoyu94/chatgpt-web # 总是使用 latest ,更新时重新 pull 该 tag 镜像即可ports…...
Python适配器模式介绍、使用方法
一、Python适配器模式介绍 适配器模式(Adapter Pattern) 是一种结构型设计模式,用于将不兼容的接口转换为另一种接口,以便系统间的协同工作。 功能: 适配器模式主要功能是将一个类的接口转换成客户端所期望的另一种接口,以满足…...
【数据结构】复杂度
🔥博客主页:小王又困了 📚系列专栏:数据结构 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、什么是数据结构 二、什么是算法 三、算法的效率 四、时间复杂度 4.…...
【读点论文】PP-YOLOE: An evolved version of YOLO,面向友好部署的模型设计,为项目后续产业落地提供了更加有效的参考
PP-YOLOE: An evolved version of YOLO Abstract 在本报告中,我们介绍了PP-YOLOE,一种具有高性能和友好部署的工业最先进的目标探测器。我们在之前的PP-YOLOv2的基础上进行优化,采用无锚模式,更强大的骨干和颈部配备CSPRepResSt…...
微服务入门---SpringCloud(二)
微服务入门---SpringCloud(二) 1.Nacos配置管理1.1.统一配置管理1.1.1.在nacos中添加配置文件1.1.2.从微服务拉取配置 1.2.配置热更新1.2.1.方式一1.2.2.方式二 1.3.配置共享1)添加一个环境共享配置2)在user-service中读取共享配置…...
51单片机IO口控制
51单片机IO口控制 1.点亮LED灯 原理:根据电路图,指向IO口的引脚;拉低电平,灯亮、 如图: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Zfco4IjK-1690308697530)(C:/Users/xie19/Pictur…...
ERROR 1064 - You have an error in your SQL syntax;
ERROR 1064 - You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near (/, 少个逗号吧,以前开始写SQL,特别是修改SQL的时候容易出现这样错误。 而且自己也知道在附近…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
