MySQL~数据库的设计
二、数据库的设计
1、多表之间的关系
1.1 三种分类
-
一对一:
-
分析:一个人只有一个身份证,一个身份证只能对应一个人
-
如:人和身份证
-
- 一对多:
-
如:部门和员工
-
分析:一个部门有多个员工,一个员工只对应一个部门
-
-
多对多:
-
如:学生和课程
-
分析:一个学生可以选择很多门课程,一个课程也可以被很多学生选择
-
1.2 实现关系
-
一对多:
-
如:部门和员工
-
实现方式:在多的一方建立外键,指向一的一方的主键。
-
-
多对多:
-
如:学生和课程
-
实现方式:多对多关系实现需要借助第三张中间表。中间表至少包含两个字段,这两个字段作为第三张表的外键,分别指向两张表的主键
-
-
一对一:
-
如:人和身份证
-
实现方式:一对一关系实现,可以在任意一方添加唯一外键指向另一方的主键。
-
1.3 练习示例
-- 创建旅游线路分类表 tab_category cid 旅游线路分类主键,自动增长 cname 旅游线路分类名称非空唯一、字符串 100
CREATE TABLE tab_category (cid INT PRIMARY KEY AUTO_INCREMENT,cname VARCHAR(100) NOT NULL UNIQUE
);
-- 创建旅游线路表 tab_route rid 旅游线路主键,自动增长 rname 旅游线路名称非空,唯一,字符串 100 price 价格 rdate 上架时间,日期类型 cid 外键,所属分类
CREATE TABLE tab_route(rid INT PRIMARY KEY AUTO_INCREMENT,rname VARCHAR(100) NOT NULL UNIQUE,price DOUBLE,rdate DATE,cid INT,FOREIGN KEY (cid) REFERENCES tab_category(cid)
);
-- 创建用户表 tab_user uid 用户主键,自增长 username 用户名长度 100,唯一,非空 password 密码长度 30,非空 name 真实姓名长度 100 birthday 生日 sex 性别,定长字符串 1 telephone 手机号,字符串 11 email 邮箱,字符串长度 100
CREATE TABLE tab_user (uid INT PRIMARY KEY AUTO_INCREMENT,username VARCHAR(100) UNIQUE NOT NULL,PASSWORD VARCHAR(30) NOT NULL,NAME VARCHAR(100),birthday DATE,sex CHAR(1) DEFAULT '男',telephone VARCHAR(11),email VARCHAR(100)
);
-- 创建收藏表 tab_favorite rid 旅游线路 id,外键 date 收藏时间 uid 用户 id,外键 rid 和 uid 不重复,设置复合主键,同一个用户不能收藏同一个线路两次
CREATE TABLE tab_favorite (rid INT, -- 线路idDATE DATETIME,uid INT, -- 用户id-- 创建复合主键PRIMARY KEY(rid,uid), -- 联合主键FOREIGN KEY (rid) REFERENCES tab_route(rid),FOREIGN KEY(uid) REFERENCES tab_user(uid)
);
2、数据库设计的范式
2.1 概念
设计数据库时,需要遵循的一些规范。从前到后依次遵循。
设计关系数据库时,遵从不同的规范要求,设计合理的关系型数据库,这些不同的规范要求被称为不同的范式,各种范式呈递次规范,越高的范式数据库冗余越小。 目前关系数据库有六种范式:
第一范式(1NF)、第二范式(2NF)、
第三范式(3NF)、巴斯-科德范式(BCNF)、
第四范式(4NF)、第五范式(5NF又称完美范式)
2.2 分类
-
第一范式(1NF):每一列都是不可分割的原子数据项
例如:
学号 姓名 系名 课 程 分数
1001 张三 信工院 大数据 90
-
第二范式(2NF):在1NF的基础上,非码属性必须完全依赖于码(在1NF基础上消除非主属性对主码的部分函数依赖)
-
几个概念:
-
函数依赖:A-->B,如果通过A属性(属性组)的值,可以确定唯一B属性的值,则称B依赖于A 例如:学号-->姓名。 (学号,课程名称) --> 分数
-
完全函数依赖:A-->B,如果A是一个属性组,则B属性值得确定需要依赖于A属性组中所有的属性值。 例如:(学号,课程名称) --> 分数
-
部分函数依赖:A-->B, 如果A是一个属性组,则B属性值得确定只需要依赖于A属性组中某一些值即可。 例如:(学号,课程名称) -- > 姓名
-
传递函数依赖:A-->B, B -- >C . 如果通过A属性(属性组)的值,可以确定唯一B属性的值,在通过B属性(属性组)的值可以确定唯一C属性的值,则称 C 传递函数依赖于A 例如:学号-->系名,系名-->系主任
-
码:如果在一张表中,一个属性或属性组,被其他所有属性所完全依赖,则称这个属性(属性组)为该表的码 例如:该表中码为:(学号,课程名称)
-
主属性:码属性组中的所有属性
-
非主属性:除过码属性组的属性
-
第三范式(3NF):在2NF基础上,任何非主属性不依赖于其它非主属性(在2NF基础上消除传递依赖)
3、数据库的备份和还原
-
命令行:
-
语法:
-
备份: mysqld ump -u用户名 -p密码 数据库名称 > 保存的路径
-
还原:
-
登录数据库
-
创建数据库
-
使用数据库
-
执行文件。source 文件路径
-
-
-
-
图形化工具:
-
步骤:
-
1、选中数据名名称点击右键
-
2、弹出菜单 选中 "备份/导出"
-
3、弹出子菜单,选中 “以SQL文件转储备份数据库”
-
4、弹出对话框,选择保存的路径,点击保存按钮即可 命令方式: mysqldump -uroot -p 数据库名>路径
还原的步骤:
1、先创建一个要还原的数据库
2、选中数据库点击右键
3、在弹出的对话框中,选择 "导入"
4、弹出的子菜单中选中"从SQL文件导入数据库"
相关文章:
MySQL~数据库的设计
二、数据库的设计 1、多表之间的关系 1.1 三种分类 一对一: 分析:一个人只有一个身份证,一个身份证只能对应一个人 如:人和身份证 一对多: 如:部门和员工 分析:一个部门有多个员工ÿ…...
开源了!最强原创图解八股文面试网来袭
强烈推荐 Github上业内新晋的一匹黑马—Java图解八股文面试网—Java2Top.cn,图解 Java 大厂面试题,深入全面,真的强烈推荐~ 这是一个二本逆袭阿里的大佬根据自己秋招上岸所看过的相关专栏,面经,课程,结合自…...
微信小程序开发6
一、分包-基础概念 1.1、什么是分包 分包指的是把一个完整的小程序项目,按照需求划分为不同的子包,在构建时打包成不同的分包,用户在使用时按需进行加载。 1.2、分包的好处 对小程序进行分包的好处主要有以下两点: 可以优化小程序…...
JS 根据身份证号获取年龄、性别、出生日期
先说一代身份证和二代身份证的区别: 1.编号位数不同,第一代身份证为15位号码,第二代证是18位号码 2.编码规则不同,第一代身份证在前6位号码后没有完整出生年份,而二代的有完整的出生年份,一代身份证将年份前二位省略…...
Python+Mongo+LSTM(GTP生成)
下面是一个简单的示例来展示如何使用Python和MongoDB来生成LSTM预测算法。 首先,我们需要安装pymongo和tensorflow库,可以使用以下命令进行安装: pip install pymongo tensorflow接下来,我们连接到MongoDB数据库并获取需要进行预…...
关于idea如何成功运行web项目
导入项目 如图 依次选择 file - new - Project from Existing Sources 选择存放的项目目录地址 如图 导入完成 点击ok 如图 依次选择 Create project from existing sources 点击next如图 ,此处默认即可 点击 next如图 点击next有该提示 是因为之前导入过…...
python读取json文件
import json# 文件路径(同目录文件名即可,不同目录需要绝对路径) path 1.json# 读取JSON文件 with open(path, r, encodingutf-8) as file:data json.load(file)#data为字典 print(data) print(type(data))...
迁移学习、微调、计算机视觉理论(第十一次组会ppt)
@TOC 数据增广 迁移学习 微调 目标检测和边界框 区域卷积神经网络R—CNN...
特殊矩阵的压缩存储
1 数组的存储结构 1.1 一维数组 各数组元素大小相同,且物理上连续存放。第i个元素的地址位置是:a[i] LOC i*sizeof(ElemType) (LOC为起始地址) 1.2 二维数组 对于多维数组有行优先、列优先的存储方法 行优先:先行后列,先存储…...
【网络原理】 (1) (应用层 传输层 UDP协议 TCP协议 TCP协议段格式 TCP内部工作机制 确认应答 超时重传 连接管理)
文章目录 应用层传输层UDP协议TCP协议TCP协议段格式TCP内部工作机制确认应答超时重传 网络原理部分我们主要学习TCP/IP协议栈这里的关键协议(TCP 和 IP),按照四层分别介绍.(物理层,我们不涉及). 应用层 我们需要学会自定义一个应用层协议. 自定义协议的原因? 当前的软件(应用…...
【SQL语句】
目录 一、SQL语句类型 1.DDL 2.DML 3.DLL 4.DQL 二、数据库操作 1.查看 2.创建 2.1 默认字符集 2.2 指定字符集 3.进入 4.删除 5.更改 5.1 库名称 5.2 字符集 三、数据表操作 1.数据类型 1.1 数值类型(常见,下同) 1.1.1 T…...
自动驾驶和机器人学习和总结专栏汇总
汇总如下: 一. 器件选型心得(系统设计)--1_goldqiu的博客-CSDN博客 一. 器件选型心得(系统设计)--2_goldqiu的博客-CSDN博客 二. 多传感器时间同步方案(时序闭环)--1 三. 多传感器标定方案&…...
【C++初阶】C++基础(下)——引用、内联函数、auto关键字、基于范围的for循环、指针空值nullptr
目录 1. 引用 1.1 引用概念 1.2 引用特性 1.3 常引用 1.4 使用场景 1.5 传值、传引用效率比较 1.6 引用和指针的区别 2. 内联函数 2.1 概念 2.2 特性 3.auto关键字(C11) 3.1 类型别名思考 3.2 auto简介 3.3 auto的使用细则 3.4 auto不能推…...
OSI 7层模型 TCPIP四层模型
》Ref: 1. 这个写的嘎嘎好,解释了为啥4层7层5层,还有数据包封装的问题:数据包在网络中的传输过程详解_数据包传输_张孟浩_jay的博客-CSDN博客 2. HTTP协议 与 TCP协议 的区别,作为web程序员必须要懂 - 知乎 (zhihu.com) 3. 数据…...
iOS-持久化
目的 1.快速展示,提升体验 已经加载过的数据,用户下次查看时,不需要再次从网络(磁盘)加载,直接展示给用户 2.节省用户流量(节省服务器资源) 对于较大的资源数据进行缓存…...
PC音频框架学习
1.整体链路 下行播放: App下发音源→CPU Audio Engine 信号处理→DSP数字信号处理→Codec DAC→PA→SPK 上行录音: MIC拾音→集成运放→Codec ADC→DSP数字信号处理→CPU Audio Engine 信号处理→App 2.硬件 CPU PCH DSP(可选) Codec PA SPKbox MIC…...
机器学习:提取问题答案
模型BERT 任务:提取问题和答案 问题的起始位置和结束位置。 数据集 数据集 DRCDODSQA 先分词,然后tokenize 文章长度是不同的,bert的token的长度有限制,一般是512, self-attention的计算量是 O ( n 2 ) O(n^2) O(n…...
【Ansible】
目录 一、Ansible简介二、ansible 环境安装部署1、管理端安装 ansible 三、ansible 命令行模块(重点)1.command 模块2.shell 模块3、cron 模块4.user 模块5.group 模块6.copy 模块(重…...
分布式版本控制系统git详解
git 是目前世界上最先进的分布式版本控制系统 补充说明 git命令 很多人都知道,Linus在1991年创建了开源的Linux,从此,Linux系统不断发展,已经成为最大的服务器系统软件了。 Linus虽然创建了Linux,但Linux的壮大是靠…...
如何使用Python进行数据挖掘?
使用Python进行数据挖掘需要掌握以下几个关键步骤: 数据收集:首先,你需要获取你要进行数据挖掘的数据。可以从公共数据集、API、数据库等各种来源收集数据。 数据清洗:清洗数据是一个重要的步骤,它包括去除重复数据、…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
