opencv-27 阈值处理 cv2.threshold()
怎么理解阈值处理?
阈值处理(Thresholding)是一种常用的图像处理技术,在机器学习和计算机视觉中经常被用于二值化图像或二分类任务。它基于设定一个阈值来将像素值进行分类,将像素值大于或小于阈值的部分分为两个不同的类别,从而得到二值化的图像或进行二分类预测。
在图像处理中的阈值处理:
图像二值化:将灰度图像转换为二值图像,其中像素值大于或等于阈值的部分设为一个值(通常为255),而小于阈值的部分设为另一个值(通常为0)。
自适应阈值处理:根据图像局部的灰度特点来自动调整不同区域的阈值,适应图像的不同部分。
在二分类任务中的阈值处理:
对于分类模型的输出概率:将模型输出的概率值与阈值进行比较,大于阈值的样本被划分为一个类别,小于阈值的样本被划分为另一个类别。
对于回归模型的输出:将模型输出的连续值与阈值进行比较,大于阈值的样本被划分为一个类别,小于阈值的样本被划分为另一个类别。
阈值处理的应用场景
- 图像二值化:将灰度图像转换为二值图像,常用于图像分割、边缘检测、形态学运算等图像处理任务。
- 自适应阈值处理:根据图像局部的灰度特点来自动调整不同区域的阈值,适应图像的不同部分。适用于光照不均匀或对比度变化较大的图像。
- 目标检测中的二分类:在目标检测任务中,通常需要将模型输出的概率值转换为二分类结果,判断目标是否存在。
- 人脸识别和人脸表情分析:在人脸图像处理中,可以通过阈值处理来检测和分析人脸的不同表情或情绪。
- 图像分割:将图像分为多个区域,常用于图像分析、目标提取和图像理解等任务。
- 文字识别和OCR(光学字符识别):在文字识别任务中,可以通过阈值处理将图像中的文字部分提取出来,便于后续识别过程。
- 遥感图像处理:在遥感图像中,阈值处理可以用于土地覆盖分类、植被检测等应用。
- 信号处理:在信号处理中,可以通过阈值处理来检测信号的起始点或结束点,以及滤除噪声。
- 异常检测:在异常检测任务中,可以使用阈值处理来识别异常点或异常事件。
- 机器学习中的二分类问题:在机器学习中,对于二分类任务,可以通过设定阈值来将模型输出的概率值转换为类别标签。
OpenCV 提供了函数 cv2.threshold()和函数 cv2.adaptiveThreshold(),用于实现阈值处理
threshold 函数
OpenCV 3.0 使用 cv2.threshold()函数进行阈值化处理,该函数的语法格式为:
retval, dst = cv2.threshold( src, thresh, maxval, type )
式中:
retval 代表返回的阈值。
dst 代表阈值分割结果图像,与原始图像具有相同的大小和类型。
src 代表要进行阈值分割的图像,可以是多通道的,8 位或 32 位浮点型数值。
thresh 代表要设定的阈值。
maxval 代表当 type 参数为 THRESH_BINARY 或者 THRESH_BINARY_INV 类型时,需要设定的最大值。
type 代表阈值分割的类型,具体类型值如表 6-1 所示。
上述公式相对抽象,可以将其可视化,具体如图 6-2 所示。
二值化阈值处理(cv2.THRESH_BINARY)
二值化阈值处理会将原始图像处理为仅有两个值的二值图像,其示意图如图 6-3 所示。其
针对像素点的处理方式为:
- 对于灰度值大于阈值thresh的像素点,将其灰度值设定为最大值。
- 对于灰度值小于或等于阈值thresh的像素点,将其灰度值设定为 0
如果使用表达式表示,其目标值的产生规则为:
式中,thresh是选定的特定阈值。
在 8 位图像中,最大值是 255。因此,在对 8 位灰度图像进行二值化时,如果将阈值设定
为 127,那么:
- 所有大于 127 的像素点会被处理为 255。
- 其余值会被处理为 0。
为了方便,在后续说明中,我们都以 8 位图像为例,即像素值最大值为 255。
实验:使用函数 cv2.threshold()对数组进行二值化阈值处理,观察处理结果
import cv2
import numpy as np
img=np.random.randint(0,256,size=[4,5],dtype=np.uint8)t,rst=cv2.threshold(img,127,255,cv2.THRESH_BINARY)
print("img=\n",img)
print("t=",t)
print("rst=\n",rst)
运行结果:
img=[[235 26 81 7 121][ 81 82 15 64 40][156 250 246 30 226][136 202 129 243 65]]
t= 127.0
rst=[[255 0 0 0 0][ 0 0 0 0 0][255 255 255 0 255][255 255 255 255 0]]
实验2:使用函数 cv2.threshold()对图像进行二值化阈值处理
import cv2
img=cv2.imread("lena.png")
#将图像转换为灰度图像
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
t,rst=cv2.threshold(img,127,255,cv2.THRESH_BINARY)
cv2.imshow("img",img)
cv2.imshow("rst",rst)
cv2.waitKey()
cv2.destroyAllWindows()
运行结果:
左图是原始图像,右图是二值化阈值处理结果。
反二值化阈值处理(cv2.THRESH_BINARY_INV)
反二值化阈值处理的结果也是仅有两个值的二值图像,与二值化阈值处理的区别在于,二
者对像素值的处理方式不同。反二值化阈值处理针对像素点的处理方式为:
对于灰度值大于阈值的像素点,将其值设定为 0。
对于灰度值小于或等于阈值的像素点,将其值设定为 255。
反二值化阈值处理方式的示意图如图 6-5 所示。
如果使用表达式来表示,其目标值的产生规则为:
式中,thresh 是选定的阈值.
实验3:使用函数 cv2.threshold()对数组进行反二值化阈值处理
import cv2
import numpy as np
img=np.random.randint(0,256,size=[4,5],dtype=np.uint8)
t,rst=cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
print("img=\n",img)
print("t=",t)
print("rst=\n",rst)
运行程序,结果如下所示:
img=
[[ 56 64 150 48 41]
[108 165 112 213 110]
[122 244 10 213 46]
[247 30 90 0 26]]
t= 127.0
rst=
[[255 255 0 255 255]
[255 0 255 0 255]
[255 0 255 0 255]
[ 0 255 255 255 255]]
大于127的置为0,小于127的置为255
后面还有
截断阈值化处理(cv2.THRESH_TRUNC)
超阈值零处理(cv2.THRESH_TOZERO_INV)
低阈值零处理(cv2.THRESH_TOZERO)
感兴趣的同学自己去多实操几遍
相关文章:

opencv-27 阈值处理 cv2.threshold()
怎么理解阈值处理? 阈值处理(Thresholding)是一种常用的图像处理技术,在机器学习和计算机视觉中经常被用于二值化图像或二分类任务。它基于设定一个阈值来将像素值进行分类,将像素值大于或小于阈值的部分分为两个不同的类别&…...

AAOS 音频焦点请求
文章目录 前言基本概念提供给应用来获取音频焦点的apiAAOS中的音频焦点管理交互矩阵duck的实现流程AAOS 测试应用kitchensink焦点相关 前言 本文章的目标是首先了解Android中音频焦点的基本概念,理解代码中相关音频焦点的使用方法。其次理解AAOS 中相关交互矩阵概念…...

订单系统中的幂等实现
一.订单提交的例子 一个订单生成并支付的过程,大致为:用户点击前端页面提交订单->后端根据此次提交信息生成订单->用户确认订单并进行支付操作->支付成功。 主要分为前端层面,后端系统层面,数据库层面。前端层面不详述…...

三个常用查询:根据用户名 / token查询用户信息+链表分页条件查询
目录 1.根据用户名或者token查询用户信息 会员信息实体类 统一状态Result类 controller层 service层及实现类 dao层 测试: 2.链表分页条件查询 会员等级实体类 封装条件类PageVo controller层 service层及实现类 dao层 Mapper.xml层 测试 vue前端参考 1.根据用户名…...

列表、张量、向量和矩阵的关系
在数学和编程中,列表、张量、向量和矩阵之间有一定的关系。这些概念在不同领域和语境中有略微不同的定义和用法,以下是它们之间的一般关系: 列表(List): 列表是编程语言中的一种数据结构,用于存…...

华为数通HCIP-ISIS高级
isis区域间的互访 1、L2区域 to L1区域 在L1区域发布的路由会以L1-LSP在L1区域内传递,到达L1-2路由器时,L1-2路由器会将该L1-LSP转换为L2-LSP在L2区域内传递; 因此L2区域的设备可以学习到L1区域的明细路由,进行访问;…...

CorelDraw怎么做立体字效果?CorelDraw制作漂亮的3d立体字教程
1、打开软件CorelDRAW 2019,用文本工具写上我们所需要的大标题。建议字体选用比较粗的适合做标题的字体。 2、给字填充颜色,此时填充的颜色就是以后立体字正面的颜色。我填充了红色,并加上了灰色的描边。 3、选中文本,单击界面左侧…...

大致了解Redis
为了保证数据的可靠性,Redis 需要在磁盘上读写 AOF 和 RDB,但在高并发场景里,这就会直接带来两个新问题:一个是写 AOF 和RDB 会造成 Redis 性能抖动,另一个是 Redis 集群数据同步和实例恢复时,读 RDB 比较慢…...

javaweb会话技术
cookie的入门使用 package com.hspedu.cookie;import javax.servlet.ServletException; import javax.servlet.http.Cookie; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import …...

android app控制ros机器人三(android登录界面)
接下来是二次开发的具体环节了,由于存在用户需求,用到ros-mobile不多,更偏向于android开发。 用ppt画了简单的展示界面,与用后交流界面的功能布局。先开发一代简易版本的app,后续可以丰富完善。ctrlcv上线。 登录界面…...

Android版本的发展4-13
Android 4.4 KitKat 1、通过主机卡模拟实现新的 NFC 功能。 2、低功耗传感器,传感器批处理,步测器和计步器。 3、全屏沉浸模式,隐藏所有系统 UI,例如状态栏和导航栏。它适用于鲜艳的视觉内容,例如照片、视频、地图、…...

【2023.7.29】浅谈手办——新人入坑指南
目录 前言入坑指南1.声明2.介绍3.树状图 总结参考文章 前言 出于对动漫的热爱,相信很多人都会买手办,本人在大一时开始入手了第一个手办,超大猿王路飞(高约50cm),当时对手办还不是很了解,只知道…...

使用贝叶斯算法完成文档分类问题
贝叶斯原理 贝叶斯原理(Bayes theorem)是一种用于计算条件概率的数学公式。它是以18世纪英国数学家托马斯贝叶斯(Thomas Bayes)的名字命名的。贝叶斯原理表达了在已知某个事件发生的情况下,另一个事件发生的概率。具体…...

【Kafka】消息队列Kafka进阶
目录 Kafka分区机制生产者分区写入策略轮询策略随机策略(不用)按key分配策略乱序问题自定义分区策略 消费者组Rebalance机制消费者分区分配策略Range范围分配策略RoundRobin轮询策略Stricky粘性分配策略 Kafka副本机制producer的ACKs参数acks配置为0acks…...

学习day55
消息订阅与发布 消息订阅与发布是一种组件间通信的方式,适用于任意组件间通信 使用步骤: 安装pubsub:npm i pubsub-js 引入:import pubsub from pubsub-js 接收数据:A组件想接收数据,则在A组件中订阅消息…...

C++-Rust-一次性掌握两门语言
C-Rust-一次性掌握两门语言 简介特色数据类型声明常量、变量判断与循环函数抽象化的对象:类与接口枚举模板与泛型Lambda匿名函数表达式 简介 本文主要是通过介绍C和Rust的基础语法达成极速入门两门开发语言。 C是在C语言的基础之上添加了面向对象的类、重载、模板等…...

汇编调用C语言定义的全局变量
在threadx移植中,系统的systick通过了宏定义的方式定义,很难对接库函数的时钟频率,不太利于进行维护 所以在C文件中自己定义了一个systick_Div的变量,通过宏定义方式设定systick的时钟频率 在汇编下要加载这个systick分频系数 …...

WEB 文件包含 /伪协议
首先谈谈什么是文件包含 WEB入门——文件包含漏洞与PHP伪协议_文件包含php伪协议_HasntStartIsOver的博客-CSDN博客 文件包含 程序员在编写的时候 可能写了自己的 函数 如果想多次调用 那么就需要 重新写在源代码中 太过于麻烦了只需要写入 funcation.php然后在需要引用的地…...

ComPDFKit PDF SDK库(支持Windows、Web、Android、iOS、Mac等平台)
ComPDFKit提供专业、全平台支持的PDF开发库,包括Windows、Mac、Linux、Android、iOS、Web平台。开发者可以快速、灵活整合PDF功能到各开发平台的软件、程序、系统中。丰富的功能,多种开发语言,灵活的部署方案可供选择,满足您对PDF…...

微服务契约测试框架-Pact
契约测试 契约测试的思想就是将原本的 Consumer 与 Provider 间同步的集成测试,通过契约进行解耦,变成 Consumer 与 Provider 端两个各自独立的、异步的单元测试。 契约测试的优点: 契约测试与单元测试以及其它测试之间没有重复,…...

LightGlue论文翻译
LightGlue:光速下的局部特征匹配 摘要 - 我们介绍 LightGlue,一个深度神经网络,学习匹配图像中的局部特征。我们重新审视 SuperGlue 的多重设计决策,稀疏匹配的最新技术,并得出简单而有效的改进。累积起来,它们使 Lig…...

iOS开发-CAShapeLayer与UIBezierPath实现微信首页的下拉菜单效果
iOS开发-CAShapeLayer与UIBezierPath实现微信首页的下拉菜单效果 之前开发中遇到需要使用实现微信首页的下拉菜单效果。用到了CAShapeLayer与UIBezierPath绘制菜单外框。 一、效果图 二、CAShapeLayer与UIBezierPath 2.1、CAShapeLayer是什么? CAShapeLayer继承自…...

《Elasticsearch 源码解析与优化实战》第5章:选主流程
《Elasticsearch 源码解析与优化实战》第5章:选主流程 - 墨天轮 一、简介 Discovery 模块负责发现集群中的节点,以及选择主节点。ES 支持多种不同 Discovery 类型选择,内置的实现称为Zen Discovery ,其他的包括公有云平台亚马逊的EC2、谷歌…...

Spring Cloud Alibaba - Nacos源码分析(三)
目录 一、Nacos客户端服务订阅的事件机制 1、监听事件的注册 2、ServiceInfo处理 serviceInfoHolder.processServiceInfo 一、Nacos客户端服务订阅的事件机制 Nacos客户端订阅的核心流程:Nacos客户端通过一个定时任务,每6秒从注册中心获取实例列表&…...

DOCKER镜像和容器
1.前言 初见DOCKER,感觉和我们常用的虚拟机(VMware,viurebox)类似,是一个独立于宿主机的模块,可以解决程序在各个系统间的移植,但它真的仅仅是这样嘛? 2.容器的优缺点 1.1.容器…...

探索网页原型设计:构建出色的用户体验
在当今数字化时代,用户对网页体验的要求日益提高。在网页设计过程中,扮演着至关重要的角色。通过网页原型设计,产品经理能够更好地展示和传达网页的整体布局、导航结构、元素位置和交互效果,从而使团队成员更清晰地了解设计意图&a…...

48,排序算法merge
功能描述: 两个容器元素合并,并储存到另一容器中 函数原型: merge(iterator beg1,iterator end1,iterator beg2,iterator end2,iterator dest); //容器元素合并,并存储到另一个容器中 //注意:两个容器必须是有序的…...

【MySQL】复合查询
复合查询目录 一、基本查询二、多表查询三、自连接四、子查询4.1 单行子查询4.2 多行子查询4.3 多列子查询4.4 在from子句中使用子查询4.5 合并查询4.5.1 union4.5.2 union all 五、实战OJ 一、基本查询 --查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的…...

JavaScript中的this指向及绑定规则
在JavaScript中,this是一个特殊的关键字,用于表示函数执行的上下文对象,也就是当前函数被调用时所在的对象。由于JavaScript的函数调用方式多种多样,this的指向也因此而变化。本文将介绍JavaScript中this的指向及绑定规则…...

css中预编译理解,它们之间区别
css预编译? css预编译器用一种专门的编程语言,它可以对web页面样式然后再编译成正常css文件,可以更加方便和高效的编写css代表。主要作用就是为css提供了变量,函数,嵌套,继承,混合等功能&#…...