当前位置: 首页 > news >正文

使用贝叶斯算法完成文档分类问题

贝叶斯原理

  贝叶斯原理(Bayes' theorem)是一种用于计算条件概率的数学公式。它是以18世纪英国数学家托马斯·贝叶斯(Thomas Bayes)的名字命名的。贝叶斯原理表达了在已知某个事件发生的情况下,另一个事件发生的概率。具体而言,它可以用来计算某个假设的后验概率,即在已知一些先验概率的情况下,根据新的证据来更新这些概率。贝叶斯原理的数学表达式为:

P(A|B) = P(B|A) * P(A) / P(B)

其中,P(A|B)表示在B发生的条件下A发生的概率,也称为后验概率;P(B|A)表示在A发生的条件下B发生的概率,也称为似然度;P(A)和P(B)分别表示A和B的先验概率,即在考虑任何证据之前,A和B分别发生的概率。上面的解释比较难以理解,下面通过一个实际的例子来看看。

  假设一个地区的晴天和雨天出现的频率分别为70%和30%,雨天时候出现爆雷的概率是80%,在晴天出现爆雷的概率是20%。其中,该地区晴天和雨天的概率是先验概率,雨天出现爆雷或者晴天出现爆雷的概率是条件概率,现在要计算后验概率:在爆雷情况下是雨天的概率。
根据贝叶斯公式,计算规则如下所示: P(雨天|爆雷) = P(爆雷|雨天)*P(雨天)/P(爆雷)
在爆雷情况下出现雨天的概率= 在雨天情况下发生爆雷的概率*雨天的概率,再除以发生爆雷的概率。 P(爆雷) =  (P爆雷|雨天)* P雨天 +  (P爆雷|晴天)*P晴天
出现爆雷的概率 = 雨天情况下出现爆雷的概率*雨天概率 + 晴天概率下出现爆雷的概率* 晴天概率,P(爆雷):称为归一化常数,下面这个公式成为全概率公式:
P(B) = Σ P(B|A_i) * P(A_i)
所以最终的计算是:
P(雨天|爆雷) = P(爆雷|雨天)*P(雨天)/P(爆雷)
P(雨天|爆雷) = 0.8 * 0.3/(0.8*0.3 + 0.2*0.7)约等于0.46
朴素贝叶斯算法进行文本分类
  朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理的分类算法。朴素贝叶斯算法的原理是基于特征条件独立假设,即假设每个特征在分类中是相互独立的 在朴素贝叶斯算法中,给定一个样本及其特征,首先需要计算每个类别的概率。然后,根据贝叶斯定理,计算每个特征在给定类别下的条件概率。最后,将每个特征的条件概率相乘,并乘以该类别的概率,得到该样本属于该类别的后验概率。将后验概率最大的类别作为该样本的分类结果。 由于朴素贝叶斯算法假设特征之间相互独立,因此它的计算速度非常快。同时,它也不需要大量的训练数据来构建分类模型。因此,朴素贝叶斯算法在处理高维度数据时具有优势,并且常常被用于文本分类、垃圾邮件过滤、情感分析等领域。
  Scikit-learn是一个基于Python编程语言的开源机器学习库,它为各种机器学习任务提供了简单而高效的工具。Scikit-learn提供了多种算法和模型,例如分类、回归、聚类、降维等。它也提供了一些实用工具,如模型选择、数据预处理、特征工程等,方便用户进行机器学习模型的构建和评估。Scikit-learn提供 了3个朴素贝叶斯分类算法,分别是高斯朴素贝叶斯(GaussianNB)、多项式朴素贝叶斯(MultinomialNB)和伯努利朴素贝叶斯(BernoulliNB)。 这三种算法适合应用在不同的场景下,我们应该根据特征变量的不同选择不同的算法:

高斯朴素贝叶斯:特征变量是连续变量,符合高斯分布,比如说人的身高,物体的长度。

多项式朴素贝叶斯:特征变量是离散变量,符合多项分布,在文档分类中特征变量体现在一个单词出现的次数,或者是单词的TF-IDF值等。

伯努利朴素贝叶斯:特征变量是布尔变量,符合0/1分布,在文档分类中特征是单词是否出现。

  上面介绍了朴素贝叶斯原理,那么如何使用朴素贝叶斯进行文档分类任务呢?下面是使用多项式朴素贝叶斯进行文本分类的demo例子。

# 中文文本分类
import os
import jieba
import warnings
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn import metricswarnings.filterwarnings('ignore')def cut_words(file_path):"""对文本进行切词:param file_path: txt文本路径:return: 用空格分词的字符串"""text_with_spaces = ''text=open(file_path, 'r', encoding='gb18030').read()textcut = jieba.cut(text)for word in textcut:text_with_spaces += word + ' 'return text_with_spacesdef loadfile(file_dir, label):"""将路径下的所有文件加载:param file_dir: 保存txt文件目录:param label: 文档标签:return: 分词后的文档列表和标签"""file_list = os.listdir(file_dir)words_list = []labels_list = []for file in file_list:file_path = file_dir + '/' + filewords_list.append(cut_words(file_path))labels_list.append(label)                                                                                                                 return words_list, labels_list# 训练数据
train_words_list1, train_labels1 = loadfile('text classification/train/女性', '女性')
train_words_list2, train_labels2 = loadfile('text classification/train/体育', '体育')
train_words_list3, train_labels3 = loadfile('text classification/train/文学', '文学')
train_words_list4, train_labels4 = loadfile('text classification/train/校园', '校园')train_words_list = train_words_list1 + train_words_list2 + train_words_list3 + train_words_list4
train_labels = train_labels1 + train_labels2 + train_labels3 + train_labels4# 测试数据
test_words_list1, test_labels1 = loadfile('text classification/test/女性', '女性')
test_words_list2, test_labels2 = loadfile('text classification/test/体育', '体育')
test_words_list3, test_labels3 = loadfile('text classification/test/文学', '文学')
test_words_list4, test_labels4 = loadfile('text classification/test/校园', '校园')test_words_list = test_words_list1 + test_words_list2 + test_words_list3 + test_words_list4
test_labels = test_labels1 + test_labels2 + test_labels3 + test_labels4stop_words = open('text classification/stop/stopword.txt', 'r', encoding='utf-8').read()
stop_words = stop_words.encode('utf-8').decode('utf-8-sig') # 列表头部\ufeff处理
stop_words = stop_words.split('\n') # 根据分隔符分隔# 计算单词权重
tf = TfidfVectorizer(stop_words=stop_words, max_df=0.5)train_features = tf.fit_transform(train_words_list)
# 上面fit过了,这里transform
test_features = tf.transform(test_words_list) # 多项式贝叶斯分类器
from sklearn.naive_bayes import MultinomialNB  
clf = MultinomialNB(alpha=0.001).fit(train_features, train_labels)
predicted_labels=clf.predict(test_features)# 计算准确率
print('准确率为:', metrics.accuracy_score(test_labels, predicted_labels))

   上面的例子中用到了TfidVectorizer来提取特征向量,TfidfVectorizer是Scikit-learn中的一个文本特征提取函数,用于将文本转换为数值特征向量。它的作用是将原始的文本数据集转换为TF-IDF特征向量集。TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于衡量一个词语在文档中的重要性的指标。词频TF计算了一个单词在文档中出现的次数,它认为一个单词的重要性和它在文档中出现的次数呈正比。逆向文档频率IDF,是指一个单词在文档中的区分度。它认为一个单词出现在的文档数越少,就越能通过这个单词把该文档和其他文档区分开。IDF越大就代表该单词的区分度越大。所以TF-IDF实际上是词频TF和逆向文档频率IDF的乘积。这样我们倾向于找到TF和IDF取值都高的单词作为区分,即这个单词在一个文档中出现的次数多,同时又很少出现在其他文档中。这样的单词适合用于分类。TF-IDF的具体计算公式如下:

TF-IDF = TF(t,d) * IDF(t)。 其中,t表示词语,d表示文档,TF(t,d)表示词语t在文档d中出现的频率,IDF(t)表示逆文档频率,可以通过以下公式计算:

IDF(t) = log(N / df(t))。 其中,N表示文档总数,df(t)表示包含词语t的文档数。

TfidfVectorizer函数的主要参数如下:

  • stop_words:停用词列表,可以是'english'表示使用Scikit-learn自带的英文停用词列表,也可以是一个自定义停用词列表;
  • tokenizer:用于分词的函数,如果不指定,则默认使用Scikit-learn的内置分词器;
  • ngram_range:用于控制特征中词语的个数,可以是单个词语(unigram),两个词语(bigram),三个词语(trigram)等;
  • max_features:用于控制特征向量的最大维度;
  • norm:用于归一化特征向量的方式,可以是'l1'或'l2';
  • use_idf:是否使用IDF权重;
  • smooth_idf:是否对IDF权重加1平滑处理;
  • sublinear_tf:是否使用对数函数对TF进行缩放。

下面是使用TfidfVectorizer将一段文本转换成特征向量的例子。

from sklearn.feature_extraction.text import TfidfVectorizervectorizer = TfidfVectorizer(stop_words='english')
documents = ["This is the first document.","This is the second document.","And this is the third one.",
]
X = vectorizer.fit_transform(documents)
print(X.toarray())
print(X.shape)

下面是打印的特征向量结果,使用了X.toarray()方法将稀疏矩阵转换为密集矩阵。,第一个结果是没有传入stop_words的结果,生成的特征向量是一个3行9列的数据,第二个结果是加入stop_words的结果,第二次是一个3行2列的数据。每一行代表一个文档,每一列代表一个特征。可以看到,这些特征是根据词频和逆文档频率计算得到的。

再回看前面的对文档分类的 Demo例子,实际使用朴素贝叶斯算法对文档进行分类的任务可以划分成下面6个子任务。

相关文章:

使用贝叶斯算法完成文档分类问题

贝叶斯原理 贝叶斯原理(Bayes theorem)是一种用于计算条件概率的数学公式。它是以18世纪英国数学家托马斯贝叶斯(Thomas Bayes)的名字命名的。贝叶斯原理表达了在已知某个事件发生的情况下,另一个事件发生的概率。具体…...

【Kafka】消息队列Kafka进阶

目录 Kafka分区机制生产者分区写入策略轮询策略随机策略(不用)按key分配策略乱序问题自定义分区策略 消费者组Rebalance机制消费者分区分配策略Range范围分配策略RoundRobin轮询策略Stricky粘性分配策略 Kafka副本机制producer的ACKs参数acks配置为0acks…...

学习day55

消息订阅与发布 消息订阅与发布是一种组件间通信的方式,适用于任意组件间通信 使用步骤: 安装pubsub:npm i pubsub-js 引入:import pubsub from pubsub-js 接收数据:A组件想接收数据,则在A组件中订阅消息…...

C++-Rust-一次性掌握两门语言

C-Rust-一次性掌握两门语言 简介特色数据类型声明常量、变量判断与循环函数抽象化的对象:类与接口枚举模板与泛型Lambda匿名函数表达式 简介 本文主要是通过介绍C和Rust的基础语法达成极速入门两门开发语言。 C是在C语言的基础之上添加了面向对象的类、重载、模板等…...

汇编调用C语言定义的全局变量

在threadx移植中,系统的systick通过了宏定义的方式定义,很难对接库函数的时钟频率,不太利于进行维护 所以在C文件中自己定义了一个systick_Div的变量,通过宏定义方式设定systick的时钟频率 在汇编下要加载这个systick分频系数 …...

WEB 文件包含 /伪协议

首先谈谈什么是文件包含 WEB入门——文件包含漏洞与PHP伪协议_文件包含php伪协议_HasntStartIsOver的博客-CSDN博客 文件包含 程序员在编写的时候 可能写了自己的 函数 如果想多次调用 那么就需要 重新写在源代码中 太过于麻烦了只需要写入 funcation.php然后在需要引用的地…...

ComPDFKit PDF SDK库(支持Windows、Web、Android、iOS、Mac等平台)

ComPDFKit提供专业、全平台支持的PDF开发库,包括Windows、Mac、Linux、Android、iOS、Web平台。开发者可以快速、灵活整合PDF功能到各开发平台的软件、程序、系统中。丰富的功能,多种开发语言,灵活的部署方案可供选择,满足您对PDF…...

微服务契约测试框架-Pact

契约测试 契约测试的思想就是将原本的 Consumer 与 Provider 间同步的集成测试,通过契约进行解耦,变成 Consumer 与 Provider 端两个各自独立的、异步的单元测试。 契约测试的优点: 契约测试与单元测试以及其它测试之间没有重复&#xff0c…...

LightGlue论文翻译

LightGlue:光速下的局部特征匹配 摘要 - 我们介绍 LightGlue,一个深度神经网络,学习匹配图像中的局部特征。我们重新审视 SuperGlue 的多重设计决策,稀疏匹配的最新技术,并得出简单而有效的改进。累积起来,它们使 Lig…...

iOS开发-CAShapeLayer与UIBezierPath实现微信首页的下拉菜单效果

iOS开发-CAShapeLayer与UIBezierPath实现微信首页的下拉菜单效果 之前开发中遇到需要使用实现微信首页的下拉菜单效果。用到了CAShapeLayer与UIBezierPath绘制菜单外框。 一、效果图 二、CAShapeLayer与UIBezierPath 2.1、CAShapeLayer是什么? CAShapeLayer继承自…...

《Elasticsearch 源码解析与优化实战》第5章:选主流程

《Elasticsearch 源码解析与优化实战》第5章:选主流程 - 墨天轮 一、简介 Discovery 模块负责发现集群中的节点,以及选择主节点。ES 支持多种不同 Discovery 类型选择,内置的实现称为Zen Discovery ,其他的包括公有云平台亚马逊的EC2、谷歌…...

Spring Cloud Alibaba - Nacos源码分析(三)

目录 一、Nacos客户端服务订阅的事件机制 1、监听事件的注册 2、ServiceInfo处理 serviceInfoHolder.processServiceInfo 一、Nacos客户端服务订阅的事件机制 Nacos客户端订阅的核心流程:Nacos客户端通过一个定时任务,每6秒从注册中心获取实例列表&…...

DOCKER镜像和容器

1.前言 ​ 初见DOCKER,感觉和我们常用的虚拟机(VMware,viurebox)类似,是一个独立于宿主机的模块,可以解决程序在各个系统间的移植,但它真的仅仅是这样嘛? 2.容器的优缺点 1.1.容器…...

探索网页原型设计:构建出色的用户体验

在当今数字化时代,用户对网页体验的要求日益提高。在网页设计过程中,扮演着至关重要的角色。通过网页原型设计,产品经理能够更好地展示和传达网页的整体布局、导航结构、元素位置和交互效果,从而使团队成员更清晰地了解设计意图&a…...

48,排序算法merge

功能描述: 两个容器元素合并,并储存到另一容器中 函数原型: merge(iterator beg1,iterator end1,iterator beg2,iterator end2,iterator dest); //容器元素合并,并存储到另一个容器中 //注意:两个容器必须是有序的…...

【MySQL】复合查询

复合查询目录 一、基本查询二、多表查询三、自连接四、子查询4.1 单行子查询4.2 多行子查询4.3 多列子查询4.4 在from子句中使用子查询4.5 合并查询4.5.1 union4.5.2 union all 五、实战OJ 一、基本查询 --查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的…...

JavaScript中的this指向及绑定规则

在JavaScript中,this是一个特殊的关键字,用于表示函数执行的上下文对象,也就是当前函数被调用时所在的对象。由于JavaScript的函数调用方式多种多样,this的指向也因此而变化。本文将介绍JavaScript中this的指向及绑定规则&#xf…...

css中预编译理解,它们之间区别

css预编译? css预编译器用一种专门的编程语言,它可以对web页面样式然后再编译成正常css文件,可以更加方便和高效的编写css代表。主要作用就是为css提供了变量,函数,嵌套,继承,混合等功能&#…...

如何使用Java处理JSON数据?

在Java中&#xff0c;您可以使用许多库来处理JSON数据。以下是使用一种常见的库 Gson 的示例&#xff1a; 首先&#xff0c;确保您已经将 Gson 库添加到您的项目中。您可以在 Maven 中添加以下依赖项&#xff1a; <dependency><groupId>com.google.code.gson<…...

java设计模式-观察者模式

什么是观察者模式 观察者模式&#xff08;Observer&#xff09;是软件设计中的一种行为模式。 它定义了对象之间的一对多关系&#xff0c;其中如果一个对象改变了状态&#xff0c;所有依赖它的对象都会自动被通知并更新。 这种模式包含了两种主要的角色&#xff0c;即被观察…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...