NHANES指标推荐:CMI

文章题目:Association between cardiometabolic index and biological ageing among adults: a population-based study
DOI:10.1186/s12889-025-22053-3
中文标题:成年人心脏代谢指数与生物衰老之间的关系:一项基于人群的研究
发表杂志:BMC Public Health
影响因子:1区,IF=3.5
发表时间:2025年3月
今天给大家分享一篇在 2025年3月发表在《BMC Public Health》(1区,IF=3.5)的文章。本研究旨在调查心脏代谢指数 (CMI)(一种新的心脏代谢状态指标)与生物衰老之间的关系。
研究方法:从2011 年至 2018 年全国健康和营养检查调查中具有全面 CMI 和生物年龄数据的参与者那里获取横断面数据。生物年龄加速 (BioAgeAccel) 计算为生物年龄与实际年龄之间的差异,生物年龄来自包含八个生物标志物的模型。进行了加权多变量回归、敏感性分析和平滑曲线拟合,以探索 CMI 与生物年龄加速之间的独立关联。进行了亚组和相互作用分析,以调查这种关联是否在人群中一致。
Table&Figure


结果解读:在4282 名年龄 ≥ 20 岁的受试者中,CMI 与生物年龄呈正相关。CMI 每增加一个单位,BioAgeAccel 就会增加 1.16 岁 [1.16 (1.02, 1.31)],CMI 每增加一个 SD,BioAgeAccel 就会增加 0.99 岁 [0.99 (0.87, 1.11)]。CMI 最高四分位数的参与者的 BioAgeAccel 比 CMI 最低四分位数的参与者高 2.49 岁 [2.49 (2.15, 2.83)]。在分层研究中,CMI 与生物年龄加速之间的正相关性在各个层次上并不一致。这种正相关性在女性、糖尿病和非高血压人群中更强。
结论:CMI 与美国成年人的生物衰老呈正相关。需要样本量更大的前瞻性研究来验证我们的发现。
大家在科研路上,可以借鉴这种研究方法,为自己的课题添砖加瓦。万层高楼平底起,一起加油呀!
相关文章:
NHANES指标推荐:CMI
文章题目:Association between cardiometabolic index and biological ageing among adults: a population-based study DOI:10.1186/s12889-025-22053-3 中文标题:成年人心脏代谢指数与生物衰老之间的关系:一项基于人群的研究 发…...
前端单元测试实战:如何开始?
实战:如何开始单元测试 1.安装依赖 npm install --save-dev jest2.简单的例子 首先,创建一个 sum.js 文件 ./sum.js function sum(a, b) {return a b; }module.exports sum;创建一个名为 sum.test.js 的文件,这个文件包含了实际测试内…...
react-native搭建开发环境过程记录
主要参考:官网的教程 https://reactnative.cn/docs/environment-setup 环境介绍:macos ios npm - 已装node18 - 已装,通过nvm进行版本控制Homebrew- 已装yarn - 已装ruby - macos系统自带的2.2版本。watchman - 正常安装Xcode - 正常安装和…...
【数据库系统概论】第3章 SQL(四)视图(超详细)
视图(View)是数据库中的虚拟表 通过执行查询定义并存储在数据库中,可以像普通表一样被查询和使用。 视图本身并不存储数据,而是基于一个或多个表的查询结果动态生成。 视图的概念 视图( View )是由其它表或视图上的查询所定义…...
观察者模式详解与C++实现
1. 模式定义 观察者模式(Observer Pattern)是一种行为型设计模式,定义了对象间的一对多依赖关系。当一个对象(被观察者/主题)状态改变时,所有依赖它的对象(观察者)都会自动收到通知…...
空调制冷量和功率有什么关系?
空调的制冷量和功率是衡量空调性能的两个核心参数,二者既有区别又紧密相关,以下是具体解析: 1. 基本定义 制冷量(Cooling Capacity)指空调在单位时间内从室内环境中移除的热量,单位为 瓦特(W) 或 千卡/小时(kcal/h)。它直接反映空调的制冷能力,数值越大,制冷效果越…...
【python报错解决训练】
在编程开发中,正确解读报错信息是解决问题的关键技能。以下是系统学习解读报错信息的方法指南: 一、理解报错信息的核心结构 典型的报错信息包含以下要素(以Python为例): Traceback (most recent call last):File &q…...
UE5 关卡序列
文章目录 介绍创建一个关卡序列编辑动画添加一个物体编辑动画时间轴显示秒而不是帧时间轴跳转到一个确定的时间时间轴的显示范围更改关键帧的动画插值方式操作多个关键帧 播放动画 介绍 类似于Unity的Animation动画,可以用来录制场景中物体的动画 创建一个关卡序列…...
AI测试用例生成平台
AI测试用例生成平台 项目背景技术栈业务描述项目展示项目重难点 项目背景 针对传统接口测试用例设计高度依赖人工经验、重复工作量大、覆盖场景有限等行业痛点,基于大语言模型技术实现接口测试用例智能生成系统。 技术栈 LangChain框架GLM-4模型Prompt Engineeri…...
C#中扩展方法和钩子机制使用
1.扩展方法: 扩展方法允许向现有类型 “添加” 方法,而无需创建新的派生类型、重新编译或以其他方式修改原始类型。扩展方法是一种特殊的静态方法,但可以像实例方法一样进行调用。 使用场景: 1.当无法修改某个类的源代码&#…...
大语言模型减少幻觉的常见方案
什么是大语言模型的幻觉 大语言模型的幻觉(Hallucination)是指模型在生成文本时,输出与输入无关、不符合事实、逻辑错误或完全虚构的内容。这种现象主要源于模型基于概率生成文本的本质,其目标是生成语法合理、上下文连贯的文本&…...
YOLOv5、YOLOv6、YOLOv7、YOLOv8、YOLOv9、YOLOv10、YOLOv11、YOLOv12的网络结构图
文章目录 一、YOLOv5二、YOLOv6三、YOLOv7四、YOLOv8五、YOLOv9六、YOLOv10七、YOLOv11八、YOLOv12九、目标检测系列文章 本文将给出YOLO各版本(YOLOv5、YOLOv6、YOLOv7、YOLOv8、YOLOv9、YOLOv10、YOLOv11、YOLOv12)网络结构图的绘制方法及图。本文所展…...
03 UV
04 Display工具栏_哔哩哔哩_bilibili 讲的很棒 ctrlMMB 移动点 s 打针 ss 批量打针...
AIGC-几款本地生活服务智能体完整指令直接用(DeepSeek,豆包,千问,Kimi,GPT)
Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总游戏脚本-辅助自动化Android控件全解手册再战Android系列Scratch编程案例软考全系列Unity3D学习专栏蓝桥系列AIGC(GPT、DeepSeek、豆包、千问、Kimi)👉关于作者 专注于Android/Unity和各种游戏开发技巧,以及各种资…...
Django ORM 定义模型
提示:定义模型字段的类型 文章目录 一、字段类型二、字段属性三、元信息 一、字段类型 常用字段 字段名描述备注AutoFieldint 自增必填参数 primary_keyTrue,无该字段时,django自动创建一个 BigAutoField,一个model不能有两个Au…...
4.18---缓存相关问题(操作原子性,击穿,穿透,雪崩,redis优势)
为什么要用redis做一层缓存,相比直接查mysql有什么优势? 首先介绍Mysql自带缓存机制的问题: MySQL 的缓存机制存在一些限制和问题,它自身带的缓存功能Query Cache只能缓存完全相同的查询语句,对于稍有不同的查询语句,…...
java八股之并发编程
1.java线程和操作系统线程之间的区别? 现在java线程本质上是操作系统线程,java中采用的是一对一的线程模型(一个用户线程对应一个内核进程) 2.什么是进程和线程? 1.进程是操作系统一次执行,资源分配和调度的…...
C#/.NET/.NET Core拾遗补漏合集(25年4月更新)
前言 在这个快速发展的技术世界中,时常会有一些重要的知识点、信息或细节被忽略或遗漏。《C#/.NET/.NET Core拾遗补漏》专栏我们将探讨一些可能被忽略或遗漏的重要知识点、信息或细节,以帮助大家更全面地了解这些技术栈的特性和发展方向。 ✍C#/.NET/.N…...
层次式架构核心:中间层的功能、优势与技术选型全解析
层次式架构中的中间层是整个架构的核心枢纽,承担着多种重要职责,在功能实现、优势体现以及技术选型等方面都有丰富的内容,以下为你详细介绍: 一、功能 1.业务逻辑处理 复杂规则运算:在许多企业级应用中,…...
PDF.js 生态中如何处理“添加注释\添加批注”以及 annotations.contents 属性
我们来详细解释一下在 PDF.js 生态中如何处理“添加注释”以及 annotations.contents 属性。 核心要点:PDF.js 本身主要是阅读器,不是编辑器 首先,最重要的一点是:PDF.js 的核心库 (pdfjs-dist) 主要设计用于解析和渲染…...
MySQL性能调优(三):MySQL中的系统库(简介、performance_schema)
文章目录 MySQL性能调优数据库设计优化查询优化配置参数调整硬件优化 1.MySQL中的系统库1.1.系统库简介1.2.performance_schema1.2.1.什么是performance_schema1.2.2.performance_schema使用1.2.3.检查当前数据库版本是否支持1.2.4.performance_schema表的分类1.2.5.performanc…...
【Python语言基础】22、异常处理
文章目录 1. 异常1.1 简介1.2 为什么需要异常处理 2. 基本语法2.1 各部分详解 3. 异常处理流程3.1 执行try代码块3.2 异常发生检查3.3 异常捕获与匹配3.4 执行匹配的 except 代码块3.5 执行 else 代码块(可选)3.6 执行 finally 代码块(可选&a…...
印度zj游戏出海代投本土网盟广告核心优势
印度游戏出海代投本土网盟广告的核心优势包括: 本土化广告策略:针对印度市场的特点,定制本土化的广告策略,吸引更多印度用户的关注和参与。 深度了解印度市场:对印度文化、消费习惯、网络使用习惯等有深入了解&#x…...
NO.97十六届蓝桥杯备战|数论板块-最大公约数和最小公倍数|欧几里得算法|秦九韶算法|小红的gcd(C++)
约数和倍数 如果a 除以b 没有余数,那么a 就是b 的倍数,b 就是a 的约数,记作b ∣ a 。 约数,也称因数。 最⼤公约数和最⼩公倍数 最⼤公约数Greatest Common Divisor,常缩写为gcd。 ⼀组整数的公约数,是…...
《软件设计师》复习笔记(11.6)——系统转换、系统维护、系统评价
目录 一、遗留系统(Legacy System) 定义: 特点: 演化策略(基于价值与技术评估): 高水平 - 低价值: 高水平 - 高价值: 低水平 - 低价值: 低水平 - 高价…...
ROS机器人一般用哪些传感器?
以下是ROS机器人常用传感器的分层详解及思维导图总结,涵盖传感器分类、核心参数、ROS支持及典型应用: 一、环境感知传感器 1. 视觉传感器 类型 原理 ROS支持 数据类型 典型型号/驱动 优缺点及应用场景 单目摄像头 单镜头成像,通过透视变换获取2D图像,依赖算法推断深度 驱…...
嵌入式linux架构理解(宏观理解)6ull学习心得---从架构理解到自写程序运行及自写程序开机自启动
一、linux系统的三个组成部分 U-Boot、Linux kernel 和 rootfs 这三者一起构成了一个完整的 Linux 系 统,一个可以正常使用、功能完善的 Linux 系统。 1.在移植 Linux之前我们需要先移植一个 bootloader 代码,这个 bootloader 代码用于启动 Linux 内核,bootloader有很多,常…...
人像面部关键点检测
此工作为本人近期做人脸情绪识别,CBAM模块前是否能加人脸关键点检测而做的尝试。由于创新点不是在于检测点的标注,而是CBAM的改进,因此,只是借用了现成库Dilb与cv2进行。 首先,下载人脸关键点预测模型:Index of /file…...
面试算法高频08-动态规划-02
动态规划练习题 题目描述 给定两个字符串 text1 和 text2,要求返回这两个字符串的最长公共子序列。例如对于字符串 “ABAZDC” 和 “BACBAD”,需找出它们最长的公共子序列。子序列是指在不改变其余字符相对位置的情况下,从原始字符串中删除…...
PyTorch逻辑回归总结
目录 PyTorch逻辑回归总结神经网络基础基本结构学习路径 线性回归简单线性回归多元线性回归 逻辑回归核心原理损失函数 梯度下降法基本思想关键公式学习率影响 PyTorch实现数据准备模型构建代码优化 核心概念对比 PyTorch逻辑回归总结 神经网络基础 基本结构 输入节点隐藏节…...
