论文导读 - 基于大规模测量与多任务深度学习的电子鼻系统实现目标识别、浓度预测与状态判断
基于大规模测量与多任务深度学习的电子鼻系统实现目标识别、浓度预测与状态判断
原论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0925400521014830
引用此论文(GB/T 7714-2015):
- WANG T, ZHANG H, WU Y, et al. Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning[J]. Sensors and Actuators B: Chemical, 2022, 351: 130915. DOI:10.1016/j.snb.2021.130915.
论文作者学术主页:https://www.researchgate.net/profile/Tao-Wang-261
1. 研究背景与意义
电子鼻(Electronic Nose, E-nose)系统作为一种仿生检测技术,模拟生物嗅觉原理,通过多传感器阵列和模式识别算法,实现对复杂气味的识别与分析,广泛应用于生物医学诊断、工业排放监测与食品质量评估等领域。传统电子鼻模式识别依赖人工特征提取与独立模型训练,存在特征信息丢失、训练流程复杂且泛化能力弱等问题。针对以上瓶颈,本文提出结合大规模自动化测量与多任务卷积神经网络(MTL-CNN)的方法,旨在实现电子鼻系统的目标气体识别、浓度预测与状态判断三任务同步完成,简化训练与应用流程,提升系统性能与适应性。
2. 系统设计与实验方法
2.1 电子鼻硬件构建
本研究中,传感器阵列与数据采集电路分离设计(如图1所示)。阵列板采用圆盘结构,搭载八种商用MOS气敏传感器(MQ系列),通过线束连接至采集板。采集板采用八路惠斯通电桥与高精度放大器(AD620),输出至16位ADC(ADS1115),并由32位微控制器(MCU)进行数据采集与433 MHz无线传输。
图1 电子鼻传感器阵列(a)与数据采集板(b)实物图,及气体测量系统内部结构示意图(c)。
2.2 自动化测量系统开发
为实现大规模、长时程、无人干预的气体测试,本文开发了基于Alwhales Auto Script(AAS)脚本语言的自动化控制系统,结合内外双层密封腔体、温控加热板、微量注射泵、自动门控及环境监测模块,实现全过程编程控制。
图2 基于AAS脚本的自动化气体测量系统架构示意。
2.3 气体响应实验
选取十二种典型挥发性有机化合物(VOCs)作为测试目标(包括甲醇、乙醇、乙二醇等),通过控制注射量和加热温度设定气体浓度区间(10-100 ppm),分别进行十轮独立响应测试,累计采集逾千万级数据点,涵盖各浓度与状态。
2.4 数据处理与标签构建
所有传感器响应数据经基线跟踪算法(BTA)实时校正。依据固定时间窗对响应曲线分段,分别标注气体类型、浓度值与工作状态(Idle/Response/Recovery),形成多标签训练集。
图4 乙醇响应实验中传感器阵列数据及其三任务标签示意。
3. 多任务卷积神经网络(MTL-CNN)模型设计
3.1 基础CNN结构
典型CNN包含卷积层、池化层与全连接层,用于特征提取、降维与分类(如图3a所示)。
3.2 双区块共享MTL-CNN架构
本文设计的MTL-CNN模型具有独特的双区块知识共享结构(如图3b所示):初始卷积池化块共享至三任务,随后分支进行任务特定优化。目标气体识别与浓度预测任务之间设有额外共享区块,以强化相关任务的信息交互,提升模型性能与稳定性。
图3 (a)典型CNN结构图;(b)本研究中MTL-CNN双区块共享结构示意。
4. 训练过程与参数优化
4.1 批次大小(Batch Size)影响分析
通过调整Batch Size(10-5000)进行训练优化,发现当Batch Size为700时,三任务收敛速度最快、交叉验证准确率最高。
图5 不同Batch Size下三任务准确率与标准误对比。
4.2 输入数据长度(Data Length)优化
研究不同输入长度对模型表现的影响,确定以4秒(8数据点)为最佳输入单元,兼顾响应过程有效性与实时性。
图6 不同数据长度下三任务准确率与标准误对比。
4.3 样本规模(Sample Volume)对性能的影响
通过控制训练样本比例(0.001-0.9),验证大样本量(>0.5)显著提升泛化能力与输出稳定性。
图7 训练与交叉验证准确率随样本量变化趋势。
图8 样本量对三任务准确率与标准差的影响统计。
5. 最终模型性能评估与对比分析
5.1 MTL-CNN综合性能
最终模型在5折交叉验证中取得气体类型识别95.2%、浓度预测92.1%、状态判断97.3%的平均准确率。
图9 (a)模型训练损失下降曲线;(b)迭代次数与交叉验证准确率关系;(c)气体分类混淆矩阵;(d)浓度预测混淆矩阵。
5.2 与传统算法对比
将MTL-CNN与8种主流模式识别算法(如SVM、KNN、RF等)进行性能与训练时间对比,结果表明,MTL-CNN在准确率、实时性与多任务集成方面均优于传统方法。
图10 传统模式识别流程(a)与MTL-CNN流程(b)对比。
图11 (a)不同算法在三任务上的性能对比;(b)不同算法训练与验证所耗时间对比。
6. 结论
本文提出基于大规模自动化测量与多任务卷积神经网络(MTL-CNN)融合的电子鼻系统模式识别新策略,首次实现了仅用4秒原始数据同时完成气体类型识别、浓度预测与工作状态判断,且准确率稳定在95%左右,验证了大数据驱动与深度学习结合在气体传感领域的巨大潜力。该研究为智能电子鼻系统的快速响应、多功能集成与实际应用奠定了坚实基础。
相关文章:

论文导读 - 基于大规模测量与多任务深度学习的电子鼻系统实现目标识别、浓度预测与状态判断
基于大规模测量与多任务深度学习的电子鼻系统实现目标识别、浓度预测与状态判断 原论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0925400521014830 引用此论文(GB/T 7714-2015): WANG T, ZHANG H, WU Y, …...
conda和bash主环境的清理
好的!要管理和清理 Conda(或 Bash)安装的包,可以按照以下步骤进行,避免冗余依赖,节省磁盘空间。 📌 1. 查看已安装的包 先列出当前环境的所有安装包,找出哪些可能需要清理ÿ…...

Webug3.0通关笔记17 中级进阶(第01-05关)
目录 第一关 出来点东西吧 1.打开靶场 2.源码分析 3.源码修正 4.文件包含漏洞渗透 第二关 提交方式是怎样的啊? 1.打开靶场 2.源码分析 3.渗透实战 (1)bp改包法 (2)POST法渗透 第三关 我还是一个注入 1.打开…...
django.db.utils.OperationalError: (1050, “Table ‘你的表名‘ already exists“)
这个错误意味着 Django 尝试执行迁移时,发现数据库中已经有一张叫 你的表名的表了,但这张表不是通过 Django 当前的迁移系统管理的,或者迁移状态和数据库实际状态不一致。 🧠 可能出现这个问题的几种情况: 1.你手动创…...
Maven 依赖范围(Scope)详解
Maven 依赖范围(Scope)详解 Maven 是一个强大的项目管理工具,广泛用于 Java 开发中构建、管理和部署应用程序。在使用 Maven 构建项目时,我们经常需要引入各种第三方库或框架作为项目的依赖项。通过在 pom.xml 文件中的 <depe…...
SpringBoot配置RestTemplate并理解单例模式详解
在日常开发中,RestTemplate 是一个非常常用的工具,用来发起HTTP请求。今天我们通过一个小例子,不仅学习如何在SpringBoot中配置RestTemplate,还会深入理解单例模式在Spring中的实际应用。 1. 示例代码 我们首先来看一个基础的配置…...

React自定义Hook之useMutilpleRef
概要 我们在React开发时候,有时候需要绑定列表中的多个元素,便于后面对列表中单个元素的操作,但是常用的hook函数useRef只能绑定一个DOM元素,本文提供一个可以解决该问题的自定义hook方法,useMutilpleRef。 代码及实…...
蛋白质大语言模型ESM介绍
ESM(Evolutionary Scale Modeling)是 Meta AI Research 团队开发的一系列用于蛋白质的预训练语言模型。这些模型在蛋白质结构预测、功能预测和蛋白质设计等领域展现出了强大的能力。以下是对 ESM 的详细介绍: 核心特点 大规模预训练:基于大规模蛋白质序列数据进行无监督学…...

从线性到非线性:简单聊聊神经网络的常见三大激活函数
大家好,我是沛哥儿,我们今天一起来学习下神经网络的三个常用的激活函数。 引言:什么是激活函数 激活函数是神经网络中非常重要的组成部分,它引入了非线性因素,使得神经网络能够学习和表示复杂的函数关系。 在神经网络…...
【算法笔记】贪心算法
一、什么是贪心算法? 贪心算法是一种在每一步选择中都采取当前看起来最优(最“贪心”)的策略,从而希望得到全局最优解的算法设计思想。 核心思想:每一步都做出局部最优选择,不回退。适用场景:…...
Node.js 开发项目
初始化 npm init## npm install 编辑packege.json 添加,以支持ES6的语法 "type": "module" 连接mysql示例 import db from ./db/ops_mysql.jsconst createTable async () > {const insert_data CREATE TABLE IF NOT EXISTS users (…...

网络准入控制系统推荐:2025年构建企业网络安全的第一道防线
随着信息技术的飞速发展,企业网络环境日益复杂,阳途网络准入控制系统作为一种先进的网络安全解决方案,其核心是确保网络接入的安全性。 一、网络准入控制系统的基本原理与功能 网络准入控制以“只有合法的用户、安全的终端才可以接入网络”为…...

XSS跨站--订单和Shell箱子后门
本文主要内容 手法 XSS平台使用 XSS工具使用 XSS结合其他漏洞 XSS具体使用场景 某订单系统XSS盲打_平台 某Shell箱子系统XSS盲打_工具 [1]订单系统经典案例 第一个简易攻击流程(订单系统):通过平台完成XSS跨站之后&a…...

游戏遭遇DDoS攻击如何快速止损?实战防御策略与应急响应指南
是不是很抽象 我自己画的 一、游戏DDoS攻击特征深度解析 游戏行业DDoS攻击呈现复合型特征,2023年监测数据显示,针对游戏服务器的攻击中,63%采用UDP反射放大HTTP慢速攻击组合,攻击峰值达3.2Tbps。攻击者利用游戏协议特性ÿ…...

cocos creator使用jenkins打包流程,打包webmobile
windows电脑使用 如果你的电脑作为打包机,一定要锁定自己的ip,如果ip动态获取,可能后续会导致jenkins无法访问,还需要重新配置jenkins和http-server的端口 从jenkins官网下载windows版 Thank you for downloading Windows Stable installer 1.jenkins安…...

自动驾驶(ADAS)领域常用数据集介绍
1. KITTI 数据集 简介:由德国卡尔斯鲁厄理工学院与丰田研究院联合创建,是自动驾驶领域最经典的评测基准,涵盖立体视觉、光流、3D检测等任务。包含市区、乡村和高速公路场景的真实数据,标注对象包括车辆、行人等,支持多…...
C++ 部署的性能优化方法
一、使用结构体提前存放常用变量 在编写前后处理函数时,通常会多次用到一些变量,比如模型输入 tensor 的 shape,count 等等,若在每个处理函数中都重复计算一次,会增加部署时的计算量。对于这种情况,可以考…...

关于IDEA的循环依赖问题
bug描述:(java: 模块循环不支持注解处理。请确保将循环 [...] 中的所有模块排除在注解处理之外) 解决方法:...

如何在idea中写spark程序
在 IntelliJ IDEA 中编写 Spark 程序,可按以下步骤进行: 1. 创建新项目 打开 IntelliJ IDEA,选择File -> New -> Project。在左侧面板选择Maven或者Gradle(这里以 Maven 为例),确保Project SDK选择…...

RAG工程-基于LangChain 实现 Advanced RAG(预检索优化)
Advanced RAG 概述 Advanced RAG 被誉为 RAG 的第二范式,它是在 Naive RAG 基础上发展起来的检索增强生成架构,旨在解决 Naive RAG 存在的一些问题,如召回率低、组装 prompt 时的冗余和重复以及灵活性不足等。它重点聚焦在检索增强࿰…...
关于常量指针和指向常量的指针
关于指针,对于常量指针和指向常量的指针也是傻傻分不清。看到定义时,不知道是指针不能变,还是指针指向的内容不能变量。 先看形式: const char * A; char * const B; 这两种有什么区别?傻傻分不清。 A这种定义&am…...

《Masked Autoencoders Are Scalable Vision Learners》---CV版的BERT
目录 一、与之前阅读文章的关系? 二、标题:带掩码的自auto编码器是一个可拓展的视觉学习器 三、摘要 四、核心图 五、结果图 六、不同mask比例对比图 七、“Introduction” (He 等, 2021, p. 1) 引言 八、“Related Work” (He 等, 2021, p. 3)相…...

高压直流输电MATLAB/simulink仿真模型+说明文档
1.模型简介 本仿真模型基于MATLAB/Simulink(版本MATLAB 2018Ra)软件。建议采用matlab2018 Ra及以上版本打开。(若需要其他版本可联系代为转换) 使用一个传输功率为1000MW(500 kV,2 kA)直流互连…...

locust压力测试
安装 pip install locust验证是否安装成功 locust -V使用 网上的教程基本上是前几年的,locust已经更新了好几个版本,有点过时了,在此做一个总结 启动 默认是使用浏览器进行设置的 # 使用浏览器 locust -f .\main.py其他参数 Usage: locust […...
python 线程池顺序执行
在Python中,线程池(ThreadPoolExecutor)默认是并发执行任务的,但若需要实现任务的顺序执行(按提交顺序执行或按结果顺序处理),可以通过以下方案实现: 方案一:强制单线程&…...

第十二届蓝桥杯 2021 C/C++组 空间
目录 题目: 题目描述: 题目链接: 思路: 思路详解: 代码: 代码详解: 题目: 题目描述: 题目链接: 空间 - 蓝桥云课 思路: 思路详解&#…...

以太网的mac帧格式
一.以太网的mac帧 帧的要求 1.长度 2.物理层...
前端如何使用Mock模拟数据实现前后端并行开发,提升项目整体效率
1. 安装 Mock.js npm install mockjs --save-dev # 或使用 CDN <script src"https://cdn.bootcdn.net/ajax/libs/Mock.js/1.0.0/mock-min.js"></script>2. 创建 Mock 数据文件 在项目中新建 mock 目录,创建 mock.js 文件: // m…...
【hadoop】HBase shell 操作
1.创建course表 hbase(main):002:0> create course,cf 2.查看HBase所有表 hbase(main):003:0> list 3.查看course表结构 hbase(main):004:0> describe course 4.向course表插入数据 hbase(main):005:0> put course,001,cf:cname,hbase hbase(main):006:0> …...
如何使用 Redis 缓存验证码
目录 🧠 Redis 缓存验证码的工作原理 🧰 实现流程 1. 安装 Redis 和 Python 客户端 2. 生成并缓存验证码 示例代码:生成并存储验证码 3. 发送验证码(以短信为例) 4. 校验验证码 示例代码:校验验证码…...