第J7周:对于ResNeXt-50算法的思考
目录
思考
一、代码功能分析
1. 构建 shortcut 分支(残差连接的旁路)
2. 主路径的第一层卷积(1×1)
4. 主路径的第三层卷积(1×1)
5. 残差连接 + 激活函数
二、问题分析总结:残差结构中通道数不一致的风险
1.深度学习框架中的张量加法规则
2.为何代码可能未报错的原因分析
3.代码中的潜在风险与不足
改进建议
显式检查通道维度
自动调整 shortcut 的通道数
统一残差结构接口,增强模块的通用性和健壮性
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
📌你需要解决的疑问:这个代码是否有错?对错与否都请给出你的思考
📌打卡要求:请查找相关资料、逐步推理模型、详细写下你的思考过程
# 定义残差单元
def block(x, filters, strides=1, groups=32, conv_shortcut=True): if conv_shortcut: shortcut = Conv2D(filters * 2, kernel_size=(1, 1), strides=strides, padding='same', use_bias=False)(x) # epsilon为BN公式中防止分母为零的值 shortcut = BatchNormalization(epsilon=1.001e-5)(shortcut) else: # identity_shortcut shortcut = x # 三层卷积层 x = Conv2D(filters=filters, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x) x = BatchNormalization(epsilon=1.001e-5)(x) x = ReLU()(x) # 计算每组的通道数 g_channels = int(filters / groups) # 进行分组卷积 x = grouped_convolution_block(x, strides, groups, g_channels) x = Conv2D(filters=filters * 2, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x) x = BatchNormalization(epsilon=1.001e-5)(x) x = Add()([x, shortcut]) x = ReLU()(x) return x
思考
一、代码功能分析
1. 构建 shortcut 分支(残差连接的旁路)
-
目的:shortcut 分支处理路径
-
如果 conv_shortcut = True,表示输入的维度(通道或空间)与主路径输出不一致,因此需要用 1x1 卷积调整它。
-
若为 False,说明维度匹配,直接将输入作为 shortcut。
-
-
1×1卷积:调整维度、实现下采样(若 strides=2);
-
BatchNorm:标准化,有助于加速训练与收敛。
作用:为残差连接做准备。
2. 主路径的第一层卷积(1×1)
-
目的:降维,减少通道数,从输入通道数 C_in → filters
-
保持空间尺寸不变,设置 stride=1
作用:减少参数数量,提高计算效率,为分组卷积做准备。
3. 分组卷积(3×3)
-
groups:将输入通道划分为多个小组,每组独立卷积。
-
g_channels:每组处理的通道数。
-
grouped_convolution_block 负责执行分组卷积。
作用:提升网络的表达力,降低计算量,是 ResNeXt 的关键创新。
4. 主路径的第三层卷积(1×1)
-
将通道数从 filters → filters * 2,以与 shortcut 的输出通道对齐。
-
保持空间尺寸不变。
作用:恢复原通道数,为后续残差连接准备。
5. 残差连接 + 激活函数
-
Add():将主路径输出与 shortcut 相加,实现残差学习。
-
ReLU():激活输出,非线性映射。
作用:引入残差连接,缓解深层网络退化,提高训练效率与性能。
二、问题分析总结:残差结构中通道数不一致的风险
在所提供的残差单元 block 函数中,存在一个潜在的问题点,即当 conv_shortcut=False 时,shortcut 分支直接使用输入张量 x,而没有经过任何通道数调整操作。与此同时,主路径经过卷积操作之后,其输出通道数被显式设定为 filters * 2。这样,在执行 Add() 操作时,如果输入张量 x 的通道数并不等于 filters * 2,就会出现形状不匹配的错误。
1.深度学习框架中的张量加法规则
以 TensorFlow/Keras 框架为例,在执行张量加法时,要求输入张量的 shape 必须完全一致,包括 batch、height、width 和 channels 四个维度。尽管在某些操作中支持 broadcasting(广播机制),但通道维度是不能自动广播的。因此,如果主路径输出和 shortcut 的通道维度不一致,Add() 操作会直接报错,通常为 InvalidArgumentError。
2.为何代码可能未报错的原因分析
尽管代码存在上述逻辑风险,但在某些特定条件下,运行时并不会出错,可能原因包括:
-
测试阶段未触发问题分支
代码运行过程中,conv_shortcut 参数始终为 True,因此始终使用了 1×1 卷积来调整 shortcut 的通道数,没有触发错误分支。
-
输入张量的通道数刚好等于目标通道数
如果传入的张量 x 的通道数恰好等于 filters * 2,即使没有卷积调整,两个分支的通道数也能对齐,因此不会出错。
-
grouped_convolution_block 可能改变了主路径输出通道数
主路径中的分组卷积函数 grouped_convolution_block 未给出定义。如果它在内部改变了特征图的通道数,可能导致主路径输出与 shortcut 在某些情况下恰好匹配,也可能在某些输入下失配。
3.代码中的潜在风险与不足
当前的 block 函数存在以下几点风险:
-
对通道数匹配的依赖是隐式的,未做任何断言或自动调整;
-
conv_shortcut=False 的分支缺乏鲁棒性,容易在模型设计中因输入不符而触发错误;
-
没有对 filters 与 groups 之间的关系进行合法性检查(如 filters 不可被 groups 整除时分组卷积将出错)。
if not conv_shortcut:shortcut = Conv2D(filters * 2, kernel_size=1, strides=strides, padding='same', use_bias=False)(x)shortcut = BatchNormalization(epsilon=1.001e-5)(shortcut)
改进建议
-
显式检查通道维度
在 conv_shortcut=False 的分支中添加通道数一致性断言:
if not conv_shortcut:assert x.shape[-1] == filters * 2, "Shortcut and main path channel mismatch."
-
自动调整 shortcut 的通道数
即使 conv_shortcut=False,也建议通过 1×1 卷积层使 shortcut 与主路径对齐:
if not conv_shortcut:shortcut = Conv2D(filters * 2, kernel_size=1, strides=strides, padding='same', use_bias=False)(x)shortcut = BatchNormalization(epsilon=1.001e-5)(shortcut)
-
统一残差结构接口,增强模块的通用性和健壮性
建议将 shortcut 的处理逻辑统一封装,避免依赖外部输入的特殊情况。
相关文章:
第J7周:对于ResNeXt-50算法的思考
目录 思考 一、代码功能分析 1. 构建 shortcut 分支(残差连接的旁路) 2. 主路径的第一层卷积(11) 4. 主路径的第三层卷积(11) 5. 残差连接 激活函数 二、问题分析总结:残差结构中通道数不一致的…...
华为云短信接入实现示例
1)构建Springboot项目 2) 添加依赖 <dependency><groupId>com.huawei.apigateway</groupId><artifactId>java-sdk-core</artifactId><version>3.2.4</version> </dependency> 3) 配置文件 huaweiyun:sms:url:…...

Linux系统下使用Kafka和Zookeeper
Apache Kafka 是一个分布式流处理平台,最初由 LinkedIn 开发,后来成为 Apache 软件基金会的顶级项目。它具有高吞吐量、可扩展性、持久性、容错性等特点,主要用于处理实时数据流。 Linux系统下使用Kafka 1.安装 Java Kafka 和 Zookeeper 都是基于 Java 开发的,所以需要先…...

Unity按钮事件冒泡
今天unity写程序时,我做了一个透明按钮,没图片,只绑了点击事件,把子对象文字组件也删了,空留一个透明按钮,此时运行时点击按钮是没有反应的,网上的教程说必须指定target graphic(目标…...

指令图像编辑模型:ICEdit-MoE-LoRA
ICEdit-MoE-LoRA 一、研究背景与目标 In-Context Edit 是一种新颖的基于指令的图像编辑方法,旨在实现与现有最佳方法相当甚至更优的编辑效果。传统图像编辑技术在处理复杂指令时存在一定局限性,尤其是在多轮编辑任务中,结果的准确性和连贯性…...
第十六届蓝桥杯 2025 C/C++B组第一轮省赛 全部题解(未完结)
目录 前言: 试题A:移动距离 试题C:可分解的正整数 试题D:产值调整 试题E:画展布置 前言: 我参加的是第一轮省赛,说实话第一次参加还是比较紧张的,真到考场上看啥都想打暴力&…...

捌拾叁- 量子傅里叶变换
1. 前言 最近公司地震,现在稍微有点时间继续学习。 看了几个算法,都说是基于 量子傅里叶变换 ,好,就是他了 Quantum Fourier。 2. 傅里叶变换 大学是学通信的,对于傅里叶变换还是有所理解的。其实就是基于一个 时域…...

2.在Openharmony写hello world
原文链接:https://kashima19960.github.io/2025/03/21/openharmony/2.在Openharmony写hello%20world/ 前言 Openharmony 的第一个官方例程的是教你在Hi3861上编写hello world程序,这个例程相当简单编写 Hello World”程序,而且步骤也很省略&…...

STM32外设-串口UART
STM32外设-串口UART 一,串口简介二,串口基础概念1,什么是同步和异步/UART与USART对比2,串行与并行3,波特率 (Baud Rate)4,数据帧 (Data Frame)5,TX 和 RX 三,硬件连接1,u…...
计算机视觉与深度学习 | 视觉+激光雷达+惯惯性SLAM算法汇总(原理,公式,代码)
视觉+激光雷达+惯性 1. LVI-SAM(Laser-Visual-Inertial SLAM)2. MMF-LVINS(Multi-Modal Feature-based LVINS)3. FAST-LIVO(Fast LiDAR-Inertial-Visual Odometry)4. CamVox5. Coco-LIC6. FAST-LIO27. SLICT(Surfel-Based LiDAR-Inertial Mapping)总结与对比以下是对视…...

MCU存储系统架构解析
今天和大家分享一下MCU存储器层次结构的设计思路。这种分层存储架构通过整合不同特性的存储单元,能够很好地平衡性能与成本需求。 首先是寄存器层,它直接集成在CPU内核里,速度最快(纳秒级),但容量比较小&a…...
使用mindie部署qwen2_vl分析视频
说明 使用mindie1.0部署qwen2_vl_72b模型,可以用来分析图片了。现在想分析视频。看了下mindie文档,支持视频分析的。 错误 错误1:没安装pyav http返回 Error code: 422 - {error: Messages token length must be in (0, 1048576], but g…...

Linux——MySQL基础
基础知识 连接服务器 mysql -h 127.0.0.1 -P 3306 -u root -p -h 指明登录部署了myqsl服务的主机 -P 指明访问的端口号 -u 指明用户 -p 指明登录密码(可以不填写) 什么是数据库 首先,数据库是分为服务端和客户端的: mysql是客户…...
Unity3D项目功耗与发热优化方案
前言 在Unity3D项目中,功耗和发热问题直接影响用户体验(如设备发烫、续航下降),尤其在移动端设备上更为关键。以下是系统的分析与优化方案: 对惹,这里有一个游戏开发交流小组,大家可以点击进来…...

OpenGl实战笔记(2)基于qt5.15.2+mingw64+opengl实现纹理贴图
一、作用原理 1、作用:将一张图片(纹理)映射到几何体表面,提升视觉真实感,不增加几何复杂度。 2、原理:加载图片为纹理 → 上传到 GPU;为顶点设置纹理坐标(如 0~1 范围)&…...
【设计模式】GoF设计模式之策略模式(Strategy Pattern)
设计模式之策略模式 Strategy Pattern V1.0核心概念角色代码示例程序运行结果代码讲解 适用范围 V1.0 核心概念 策略模式是一种行为型设计模式,其核心思想是业务类执行某个动作时,可以使用该动作的不同的实现,并在程序运行中可以切换使用该…...

【计算机视觉】OpenCV实战项目: opencv-text-deskew:实时文本图像校正
opencv-text-deskew:基于OpenCV的实时文本图像校正 一、项目概述与技术背景1.1 核心功能与创新点1.2 技术指标对比1.3 技术演进路线 二、环境配置与算法原理2.1 硬件要求2.2 软件部署2.3 核心算法流程 三、核心算法解析3.1 文本区域定位3.2 角度检测优化3.3 仿射变换…...
Solidity语言基础:区块链智能合约开发入门指南
一、Solidity概述 Solidity是以太坊生态系统中最重要的智能合约编程语言,由Gavin Wood于2014年提出。作为面向合约的高级语言,它结合了JavaScript、Python和C的语法特点,专为在以太坊虚拟机(EVM)上运行而设计。 核心…...

Java 23种设计模式 - 结构型模式7种
Java 23种设计模式 - 结构型模式7种 1 适配器模式 适配器模式把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能够在一起工作。 优点 将目标类和适配者类解耦增加了类的透明性和复用性,将具体的实现封…...

数据库(MySQL)基础
一、登录数据库 在linux系统中登录数据库的指令 mysql -h 127.48.0.236 -P 3306 -u root -p -h:填写IP地址,指明要连接的主机。如果不加该字段表示本地主机-P:填写端口号,指明进程。 如果不加该字段会使用默认的端口号。-u&…...
【愚公系列】《Manus极简入门》028-创业规划顾问:“创业导航仪”
🌟【技术大咖愚公搬代码:全栈专家的成长之路,你关注的宝藏博主在这里!】🌟 📣开发者圈持续输出高质量干货的"愚公精神"践行者——全网百万开发者都在追更的顶级技术博主! …...
【PhysUnits】1 SI Prefixes 实现解析(prefix.rs)
一、源码 // prefix.rs //! SI Prefixes (国际单位制词头) //! //! 提供所有标准SI词头用于单位转换,仅处理10的幂次 //! //! Provides all standard SI prefixes for unit conversion, handling only powers of 10.use typenum::{Z0, P1, P2, P3, P6, P9, P12, …...

Vue 2.0 详解全教程(含 Axios 封装 + 路由守卫 + 实战进阶)
目录 一、Vue 2.0 简介1.1 什么是 Vue?1.2 Vue 2.x 的主要特性 二、快速上手2.1 引入 Vue2.2 创建第一个 Vue 实例 三、核心概念详解3.1 模板语法3.2 数据绑定3.3 事件绑定3.4 计算属性 & 侦听器 四、组件系统4.1 定义全局组件4.2 单文件组件(*.vue …...
Kotlin空安全解决Android NPE问题
在 Android 开发中,NullPointerException(NPE)一直是最常见的崩溃类型之一。Kotlin 通过创新的空安全机制,在语言层面彻底解决了这一问题。以下是 Kotlin 空安全的核心要点和实战指南: 一、Kotlin 空安全设计哲学 编译期防御:通过类型系统强制区分可空(?)与非空类型显…...

依赖关系-根据依赖关系求候选码
关系模式R(U, F), U{},F是R的函数依赖集,可以将属性分为4类: L: 仅出现在依赖集F左侧的属性 R: 仅出现在依赖集F右侧的属性 LR: 在依赖集F左右侧都出现的属性 NLR: 在依赖集F左右侧都未出现的属性 结论1: 若X是L类…...
【强化学习】动态规划(Dynamic Programming, DP)算法
1、动态规划算法解题 LeetCode 931. 下降路径最小和 给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。 下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选…...

uniapp-商城-47-后台 分类数据的生成(通过数据)
在第46章节中,我们为后台数据创建了分类的数据表结构schema,使得可以通过后台添加数据并保存,同时使用云函数进行数据库数据的读取。文章详细介绍了如何通过前端代码实现分类管理功能,包括获取数据、添加、更新和删除分类。主要代…...

java-----------------多态
多态,当前指的是 java 所呈现出来的一个对象 多态 定义 多态是指同一个行为具有多个不同表现形式或形态的能力。在面向对象编程中,多态通过方法重载和方法重写来实现。 强弱类型语言 javascript 或者python 是弱类型语言 C 语言,或者 C…...

【文档智能】开源的阅读顺序(Layoutreader)模型使用指南
一年前,笔者基于开源了一个阅读顺序模型(《【文档智能】符合人类阅读顺序的文档模型-LayoutReader及非官方权重开源》), PDF解析并结构化技术路线方案及思路,文档智能专栏 阅读顺序检测旨在捕获人类读者能够自然理解的…...
Java中的内部类详解
目录 什么是内部类? 生活中的内部类例子 为什么需要内部类? 生活中的例子 内部类的存在意义 内部类的分类 1. 成员内部类 什么是成员内部类? 成员内部类的特点 如何使用成员内部类? 成员内部类访问外部类同名成员 2. …...