当前位置: 首页 > article >正文

Go 语言 slice(切片) 的使用

序言

 在许多开发语言中,动态数组是必不可少的一个组成部分。在实际的开发中很少会使用到数组,因为对于数组的大小大多数情况下我们是不能事先就确定好的,所以他不够灵活。动态数组通过提供自动扩容的机制,极大地提升了开发效率。这篇文章将介绍 Go 语言中的动态数组 — slice(切片)


1. 数据结构

 切片的组成如下, 每一个字段的含义如下:

  • Data:指向存储元素数组的指针;
  • Len:该数组中元素的个数
  • Cap:该数组的容量大小
type SliceHeader struct {Data uintptrLen  intCap  int
}

如果你之前了解过 C++ 中的 vector 你会发现其实他们的思路是一样的。一个实际存储元素的切片如下:在这里插入图片描述


2. 切片的初始化

a. 声明但不初始化

 在 Go 语言中,如果你声明一个切片但不初始化它,它的默认值是 nil。这意味着该切片没有指向任何底层数组,长度和容量都为 0:

func main() {var slice []intsliceHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))dataPtr := unsafe.Pointer(sliceHeader.Data)fmt.Printf("data = %v, len = %d, cap = %d\n", dataPtr, len(slice), cap(slice))
}

这里程序的输出是:

data = , len = 0, cap = 0

b. 带初始值初始化

 比起第一种方式,这个会在声明的时候带上字面值来初始化一个切片:

slice := []int{1, 2, 3} 
fmt.Printf("data = %v, len = %d, cap = %d\n", slice, len(slice), cap(slice))

此时,该切片的 lencap 会和元素数量保持一致,程序输出:

data = [1 2 3], len = 3, cap = 3

c. 使用 make 初始化

 使用 make 来初始化一个切片也有两者方式,首先是第一种:

slice := make([]int, 5)
fmt.Printf("data = %v, len = %d, cap = %d\n", slice, len(slice), cap(slice))

这代表创建一个切片,并且切片的 lencap 都是 5,切片的元素的值采用该类型的默认值:

data = [0 0 0 0 0], len = 5, cap = 5

第二种是将 lencap 分别赋值:

slice := make([]int, 2, 4)
fmt.Printf("data = %v, len = %d, cap = %d\n", slice, len(slice), cap(slice))

这代表创建一个切片,并且切片的len 是 2,cap 是 4:

data = [0 0], len = 2, cap = 4

这也是最常用的方式,使用 make 来预先分配内存大小可以避免后续添加元素时频繁进行扩容操作!

d. 下标索引初始化

Go 支持指定一个索引范围来初始化一个切片,这是 C++vector 所不具备的能力,举个例子:

arr := [5]int{1, 2, 3, 4, 5}
slice := arr[1:4]
fmt.Println(slice)   // [2 3 4]

这里有一个长度为 5 的数组,现在使用索引范围 [1, 4) 「左闭右开」 来初始化一个切片,甚至还可以这样表达:

slice = arr[:4]   // 等价于 [0:4]
slice = arr[1:]   // 等价于 [1:len(arr) - 1]

现在有一个问题,使用索引初始化的切片和原数组是什么关系呢?换句话说这里是否涉及到了深拷贝呢?上代码:

arr := [5]int{1, 2, 3, 4, 5}
slice := arr[1:4] // [2, 3, 4]
slice[0] = 0 // 修改值
fmt.Printf(“arr=%v\n”, arr)
fmt.Printf(“slice=%v\n”, slice)

输出结果是:

arr=[1 0 3 4 5]
slice=[0 3 4]

上文中我们了解到了一个 slice 的结构是怎么样的,结合输出的结果,不难推断出 data 指针指向了该数组的第二个位置,如下:
在这里插入图片描述
这里 cap 的大小为什么是 4 怎么得到的呢 — cap = cap(arr) - 1


3. 切片的追加和扩容

a. 元素追加

 我们可以通过 append 操作来在切片最后追加元素,追加方式也有多种,举个栗子:

slice := []int{1, 2}
slice = append(slice, 3)       // 追加一个元素
slice = append(slice, 4, 5, 6) // 追加多个元素
slice = append(slice, []int{7, 8}...) // 追加一个切片,...表示解包,不能省略

对于追加的操作,大家是否存在疑惑的点呢?我刚开始就不理解为什么在追加操作后对 slice 进行赋值的操作。这是因为 append 函数有一个重要的特性需要特别注意:它可能会返回一个新的底层数组(取决于是否进行扩容操作)。如果没有进行赋值操作,那么 slice 还是指向原来的数组,举个栗子:

在这里插入图片描述

b. 切片扩容

 当切片的 len 等于 cap 时,在下一次 append 操作前就会进行一次扩容操作,扩容的逻辑如下:

func growslice(et *_type, old slice, cap int) slice {...newcap := old.capdoublecap := newcap + newcapif cap > doublecap {newcap = cap} else {if old.len < 1024 {newcap = doublecap} else {for 0 < newcap && newcap < cap {newcap += newcap / 4}if newcap <= 0 {newcap = cap}}}...
}

扩容的策略总结如下:
在这里插入图片描述
可以看到 Go 语言增长容量的策略还是比较缓和的。


4. 切片易踩的坑

a. 参数传递类型傻傻分不清

 首先,我们先聊聊 C++ 当中的值传递和引用传递,就比如:

int main() {vector<int> vec = { 1, 2, 3, 4, 5 }funcJustForRead(vec)return 0;
}void funcJustForRead(vector<int> &vec) {...
}

对于某些只读的场景,我们一般会传引用,这样就大大减少了拷贝带来的开销。在 Go 语言中好像并没有 引用 的概念?但是仔细思考一下,Go 真的需要吗:

func main() {slice := []int{ 1, 2, 3, 4, 5 }funcJustForRead(slice)
}func funcJustForRead(slice []int) {...
}

形参是实参的拷贝,slice 中指向元素的是 data 指针,即使形参和实参的 data 不一样,但是两者是指向的同一个数组,所以不需要引用。
 现在,这里有一个函数会对切片进行追加操作,我依然是值传递是否还是可行呢?举个栗子(假设这里不涉及扩容操作):

func main() {slice := []int{1, 2}fmt.Println(slice)funcForAppend(slice)fmt.Println(slice)
}func funcForAppend(slice []int) {slice = append(slice, 3)
}

输出结果是:

[1 2]
[1 2]

并没有预想的新增一个值,为什么?上面我们介绍了,append 会返回一个新的切片,我们在 main 中使用的还是原来的切片。怎么解决呢?传递指针:

func main() {slice := make([]int, 0, 2)fmt.Println(slice)funcForAppend(&slice)fmt.Println(slice)
}func funcForAppend(slice *[]int) {*slice = append(*slice, 3)
}

b. len 和 cap 傻傻分不清

 之前我们谈到过,可以预先分配好空间,可以避免后续的频繁扩容操作,但是是否会有以下的误解呢:

func main() {slice := make([]int, 5)slice = append(slice, 1)slice = append(slice, 1)slice = append(slice, 1)slice = append(slice, 1)fmt.Println(slice) // [0 0 0 0 0 1 1 1 1]
}

这里代表预先分配好 5 个空间,并且每一个空间使用该类型的默认值填充,当我们新加入元素时,是在已有的基础上往后添加而不是从前开始覆盖。正确的姿势应该是这样子的:

func main() {slice := make([]int, 0, 5)slice = append(slice, 1)slice = append(slice, 1)slice = append(slice, 1)slice = append(slice, 1)fmt.Println(slice) // [1 1 1 1]
}

5. 总结

 不仅只是会使用,并且知其所以然。我自认为这是非常重要的,这不仅能够很大程度上减小我们在开发中犯错的概念,还能够有效提升代码的质量。所以通过这篇 silce 带我们走入 Go 的世界吧。

相关文章:

Go 语言 slice(切片) 的使用

序言 在许多开发语言中&#xff0c;动态数组是必不可少的一个组成部分。在实际的开发中很少会使用到数组&#xff0c;因为对于数组的大小大多数情况下我们是不能事先就确定好的&#xff0c;所以他不够灵活。动态数组通过提供自动扩容的机制&#xff0c;极大地提升了开发效率。这…...

Android Exoplayer 实现多个音视频文件混合播放以及音轨切换

在之前的文章ExoPlayer中常见MediaSource子类的区别和使用场景中介绍了Exoplayer中各种子MediaSource的使用场景&#xff0c;这篇我们着重详细介绍下实现多路流混合播放的用法。常见的使用场景有&#xff1a;视频文件电影字幕、正片视频广告视频、背景视频背景音乐等。 初始化…...

深入浅出:Java 中的动态类加载与编译技术

1. 引言 Java 的动态性是其强大功能之一,允许开发者在运行时加载和编译类,从而构建灵活、可扩展的应用程序。动态类加载和编译在许多高级场景中至关重要,例如插件系统、动态代理、框架开发(如 Spring)和代码生成工具。Java 提供了两大核心机制来实现这一目标: 自定义 Cl…...

js常用的数组遍历方式

以下是一个完整的示例&#xff0c;将包含图片、文字和数字的数组渲染到 HTML 页面&#xff0c;使用 ​多种遍历方式​ 实现不同的渲染效果&#xff1a; 1. 准备数据&#xff08;数组&#xff09; const items [{ id: 1, name: "苹果", price: 5.99, image: "h…...

【网络编程】五、三次握手 四次挥手

文章目录 Ⅰ. 三次握手Ⅱ. 建立连接后的通信Ⅲ. 四次挥手 Ⅰ. 三次握手 ​ 1、首先双方都是处于未通信的状态&#xff0c;也就是关闭状态 CLOSE。 ​ 2、因为服务端是为了服务客户端的&#xff0c;所以它会提前调用 listen() 函数进行对客户端请求的监听。 ​ 3、接着客户端就…...

【类拷贝文件的运用】

常用示例 当我们面临将文本文件分成最大大小块的时&#xff0c;我们可能会尝试编写如下代码: public class TestSplit {private static final long maxFileSizeBytes 10 * 1024 * 1024; // 默认10MBpublic void split(Path inputFile, Path outputDir) throws IOException {…...

从 AGI 到具身智能体:解构 AI 核心概念与演化路径全景20250509

&#x1f916; 从 AGI 到具身智能体&#xff1a;解构 AI 核心概念与演化路径全景 作者&#xff1a;AI 应用实践者 在过去的几年中&#xff0c;AI 领域飞速发展&#xff0c;从简单的文本生成模型演进为今天具备复杂推理、感知能力的“智能体”系统。本文将从核心概念出发&#x…...

Docker Compose 的历史和发展

这张图表展示了Docker Compose从V1到V2的演变过程&#xff0c;并解释了不同版本的Compose文件格式及其支持情况。以下是对图表的详细讲解&#xff1a; Compose V1 No longer supported: Compose V1已经不再支持。Compose file format 3.x: 使用了版本3.x的Compose文件格式。 …...

ARMV8 RK3399 u-boot TPL启动流程分析 --crt0.S

上一篇介绍到start.S 最后一个指令是跳转到_main, 接下来分析 __main 都做了什么 arch/arm/lib/crt0.S __main 注释写的很详细&#xff0c;主要分为5步 1. 准备board_init_f的运行环境 2. 跳转到board_init_f 3. 设置broad_init_f 申请的stack 和 GD 4. 完整u-boot 执行re…...

从 JIT 即时编译一直讲到CGI|FastGGI|WSGI|ASGI四种协议的实现细节

背景 我一度理解错了这个东西&#xff0c;之前没有AI的时候&#xff0c;也没深究过&#xff0c;还觉得PHP8支持了常驻内存的运行的错误理解&#xff0c;时至今日再来看这个就很清晰了。 另外&#xff0c;早几年对以上4个协议&#xff0c;我也没搞懂&#xff0c;时至今日&…...

Vue.js 页面切换空白与刷新 404 问题深度解析

在使用 Vue.js 开发单页应用 (SPA) 的过程中&#xff0c;开发者经常会遇到两个常见问题&#xff1a;页面切换时出现短暂的空白屏幕&#xff0c;以及刷新页面时返回 404 错误。这两个问题不仅影响用户体验&#xff0c;还可能阻碍项目的正常上线。本文将深入探讨这两个问题的成因…...

CSS3 遮罩

在网页设计中&#xff0c;我们经常需要实现一些特殊的视觉效果来增强用户体验。CSS3 遮罩&#xff08;mask&#xff09;允许我们通过控制元素的可见区域来创建各种精美的视觉效果。本文将带你全面了解 CSS3 遮罩的功能和应用。 什么是 CSS3 遮罩&#xff1f; CSS3 遮罩是一种…...

ResNet残差神经网络的模型结构定义(pytorch实现)

ResNet残差神经网络的模型结构定义&#xff08;pytorch实现&#xff09; ResNet‑34 ResNet‑34的实现思路。核心在于&#xff1a; 定义残差块&#xff08;BasicBlock&#xff09;用 _make_layer 方法堆叠多个残差块按照 ResNet‑34 的通道和层数配置来搭建网络 import torch…...

uniapp|商品列表加入购物车实现抛物线动画效果、上下左右抛入、多端兼容(H5、APP、微信小程序)

以uniapp框架为基础,详细解析商品列表加入购物车抛物线动画的实现方案。通过动态获取商品点击位置与购物车坐标,结合CSS过渡动画模拟抛物线轨迹,实现从商品图到购物车图标的动态效果。 目录 核心实现原理坐标动态计算抛物线轨迹模拟​动画元素控制代码实现详解模板层设计脚本…...

谈AI/OT 的融合

过去的十几年间&#xff0c;工业界讨论最多的话题之一就是IT/OT 融合&#xff0c;现在&#xff0c;我们不仅要实现IT/OT 的融合&#xff0c;更要面向AI/OT 的融合。看起来不太靠谱&#xff0c;却留给我们无限的想象空间。OT 领域的专家们不要再当“九斤老太”&#xff0c;指责这…...

USB传输模式

USB有四种传输模式: 控制传输, 中断传输, 同步传输, 批量传输 1. 中断传输 中断传输一般用于小批量, 非连续的传输. 对实时性要求较高. 常见的使用此传输模式的设备有: 鼠标, 键盘等. 要注意的是, 这里的 “中断” 和我们常见的中断概念有差异. Linux中的中断是设备主动发起的…...

Tomcat的`context.xml`配置详解!

全文目录&#xff1a; 开篇语前言一、context.xml 文件的基本结构二、常见的 context.xml 配置项1. **数据源&#xff08;DataSource&#xff09;配置**示例&#xff1a; 2. **日志配置**示例&#xff1a; 3. **设置环境变量&#xff08;Environment Variables&#xff09;**示…...

MapReduce 的工作原理

MapReduce 是一种分布式计算框架&#xff0c;用于处理和生成大规模数据集。它将任务分为两个主要阶段&#xff1a;Map 阶段和 Reduce 阶段。开发人员可以使用存储在 HDFS 中的数据&#xff0c;编写 Hadoop 的 MapReduce 任务&#xff0c;从而实现并行处理1。 MapReduce 的工作…...

.NET10 - 尝试一下Open Api的一些新特性

1.简单介绍 .NET9中Open Api有了很大的变化&#xff0c;在默认的Asp.NET Core Web Api项目中&#xff0c;已经移除了Swashbuckle.AspNetCore package&#xff0c;同时progrom中也变更为 builder.Servers.AddOpenApi() builder.Services.MapOpenApi() 2025年微软将发布…...

RabbitMQ 工作模式

RabbitMQ 一共有 7 中工作模式&#xff0c;可以先去官网上了解一下&#xff08;一下截图均来自官网&#xff09;&#xff1a;RabbitMQ 官网 Simple P&#xff1a;生产者&#xff0c;要发送消息的程序&#xff1b;C&#xff1a;消费者&#xff0c;消息的接受者&#xff1b;hell…...

基于C++的多线程网络爬虫设计与实现(CURL + 线程池)

在当今大数据时代&#xff0c;网络爬虫作为数据采集的重要工具&#xff0c;其性能直接决定了数据获取的效率。传统的单线程爬虫在面对海量网页时往往力不从心&#xff0c;而多线程技术可以充分利用现代多核CPU的计算能力&#xff0c;显著提升爬取效率。本文将详细介绍如何使用C…...

Android11.0 framework第三方无源码APP读写断电后数据丢失问题解决

1.前言 在11.0中rom定制化开发中,在某些产品开发中,在某些情况下在App用FileOutputStream读写完毕后,突然断电 会出现写完的数据丢失的问题,接下来就需要分析下关于使用FileOutputStream读写数据的相关流程,来实现相关 功能 2.framework第三方无源码APP读写断电后数据丢…...

国产大模型「五强争霸」:决战AGI,谁主沉浮?

引言 中国AI大模型市场正经历一场史无前例的洗牌&#xff01;曾经“百模混战”的局面已落幕&#xff0c;字节、阿里、阶跃星辰、智谱和DeepSeek五大巨头强势崛起&#xff0c;形成“基模五强”新格局。这场竞争不仅是技术实力的较量&#xff0c;更是资源、人才与生态的全面博弈。…...

【Python 基础语法】

Python 基础语法是编程的基石&#xff0c;以下从核心要素到实用技巧进行系统梳理&#xff1a; 一、代码结构规范 缩进规则 使用4个空格缩进&#xff08;PEP 8标准&#xff09;缩进定义代码块&#xff08;如函数、循环、条件语句&#xff09; def greet(name):if name: # 正确缩…...

【日撸 Java 三百行】Day 11(顺序表(一))

目录 Day 11&#xff1a;顺序表&#xff08;一&#xff09; 一、关于顺序表 二、关于面向对象 三、代码模块分析 1. 顺序表的属性 2. 顺序表的方法 四、代码及测试 拓展&#xff1a; 小结 Day 11&#xff1a;顺序表&#xff08;一&#xff09; Task&#xff1a; 在《数…...

path环境变量满了如何处理,分割 PATH 到 Path1 和 Path2

要正确设置 Path1 的值&#xff0c;你需要将现有的 PATH 环境变量 中的部分路径复制到 Path1 和 Path2 中。以下是详细步骤&#xff1a; 步骤 1&#xff1a;获取当前 PATH 的值 打开环境变量窗口&#xff1a; 按 Win R&#xff0c;输入 sysdm.cpl&#xff0c;点击 确定。在 系…...

软考 系统架构设计师系列知识点之杂项集萃(55)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之杂项集萃&#xff08;54&#xff09; 第89题 某软件公司欲开发一个Windows平台上的公告板系统。在明确用户需求后&#xff0c;该公司的架构师决定采用Command模式实现该系统的界面显示部分&#xff0c;并设计UML类图如…...

保持Word中插入图片的清晰度

大家有没有遇到这个问题&#xff0c;原本绘制的高清晰度图片&#xff0c;插入word后就变模糊了。先说原因&#xff0c;word默认启动了自动压缩图片功能&#xff0c;分享一下如何关闭这项功能&#xff0c;保持Word中插入图片的清晰度。 ①在Word文档中&#xff0c;点击左上角的…...

Web应用开发指南

一、引言 随着互联网的迅猛发展&#xff0c;Web应用已深度融入日常生活的各个方面。为满足用户对性能、交互与可维护性的日益增长的需求&#xff0c;开发者需要一整套高效、系统化的解决方案。在此背景下&#xff0c;前端框架应运而生。不同于仅提供UI组件的工具库&#xff0c…...

贝叶斯算法

贝叶斯算法是一类基于贝叶斯定理的机器学习算法&#xff0c;它们在分类任务中表现出色&#xff0c;尤其在处理具有不确定性和 probabilistic 关系的数据时具有独特优势。本文将深入探讨贝叶斯算法的核心原理、主要类型以及实际应用案例&#xff0c;带你领略贝叶斯算法在概率推理…...