Yolov8的详解与实战-深度学习目标检测
Yolov8的详解与实战-
文章目录
摘要
模型详解
C2F模块
Loss
head部分
模型实战
训练COCO数据集
下载数据集
COCO转yolo格式数据集(适用V4,V5,V6,V7,V8)
配置yolov8环境
训练
测试
训练自定义数据集
Labelme数据集
摘要
YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,鉴于Yolov5的良好表现,Yolov8在还没有开源时就收到了用户的广泛关注。yolov8的整体架构如下:
Yolov8的改进之处有以下几个地方:
Backbone:使用的依旧是CSP的思想,将YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
PAN-FPN:YOLOv8依旧使用了PAN的思想,不同的是YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;
Decoupled-Head:这一点源自YOLOX;分类和回归两个任务的head不再共享参数,YoloV8也借鉴了这样的head设计。
Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;
损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;
样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。
yolov8是个模型簇,从小到大包括:yolov8n、yolov8s、yolov8m、yolov8l、yolov8x等。模型参数、运行速度、参数量等详见下表:
对比yolov5
,如下表:
mAP和参数量都上升了不少,具体的感受还是要亲自实践一番。
这篇文章首先对YoloV8做详细的讲解,然后实现对COCO数据集的训练和测试,最后,实现自定义数据集的训练和测试。
希望能帮助到朋友们!
分割的结果
分类的结果
模型详解
C2F模块
yolov8将yolov5中的C3模块换成了C2F模型,我们先了解一下C3模块,如图:
C3模块,其主要是借助CSPNet提取分流的思想,同时结合残差结构的思想,设计了所谓的C3 Block,这里的CSP主分支梯度模块为BottleNeck模块,堆叠的个数由参数n来进行控制,不同的模型,n的个数也不相同。C3的pytorch代码如下:
class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef init(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansionsuper().init()c_ = int(c2 * e) # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
接下来,我们一起学习C2F模块,先经过一个Conv,然后使用chunk函数将out平均拆分成两个向量,然后保存到list中,将后半部分输入到Bottleneck Block里面,Bottleneck Block里面有n个Bottleneck,将每个Bottleneck的输出都追加list中,有n个,所以拼接之后的out等于0.5✖(n+2)。然后经过一个Conv输出,所以输出为h×w×c_out。如下图:
如果还是比较难懂,我将具体的数据代入图中,得出下图:
Loss
对于YOLOv8,其分类损失为VFL Loss,其回归损失为CIOU Loss+DFL的形式,这里Reg_max默认为16。
VFL主要改进是提出了非对称的加权操作,FL和QFL都是对称的。而非对称加权的思想来源于论文PISA,该论文指出首先正负样本有不平衡问题,即使在正样本中也存在不等权问题,因为mAP的计算是主正样本。
q是label,正样本时候q为bbox和gt的IoU,负样本时候q=0,当为正样本时候其实没有采用FL,而是普通的BCE,只不过多了一个自适应IoU加权,用于突出主样本。而为负样本时候就是标准的FL了。可以明显发现VFL比QFL更加简单,主要特点是正负样本非对称加权、突出正样本为主样本。
针对这里的DFL(Distribution Focal Loss),其主要是将框的位置建模成一个 general distribution,让网络快速的聚焦于和目标位置距离近的位置的分布。
DFL 能够让网络更快地聚焦于目标 y 附近的值,增大它们的概率;
DFL的含义是以交叉熵的形式去优化与标签y最接近的一左一右2个位置的概率,从而让网络更快的聚焦到目标位置的邻近区域的分布;也就是说学出来的分布理论上是在真实浮点坐标的附近,并且以线性插值的模式得到距离左右整数坐标的权重。
head部分
相对于YOLOv5,YOLOv8将Head里面C3模块替换为了C2f,将上采样之前的1×1卷积去除了,将Backbone不同阶段输出的特征直接送入了上采样操作。通过下图对比可以看出差别:
YOLOv8则是使用了Decoupled-Head,同时由于使用了DFL 的思想,因此回归头的通道数也变成了4*reg_max的形式:
模型实战
训练COCO数据集
本次使用2017版本的COCO数据集作为例子,演示如何使用YoloV8训练和预测。
下载数据集
Images:
2017 Train images [118K/18GB] :http://images.cocodataset.org/zips/train2017.zip
2017 Val images [5K/1GB]:http://images.cocodataset.org/zips/val2017.zip
2017 Test images [41K/6GB]:http://images.cocodataset.org/zips/unlabeled2017.zip
Annotations:
2017 annotations_trainval2017 [241MB]:http://images.cocodataset.org/annotations/annotations_trainval2017.zip
COCO转yolo格式数据集(适用V4,V5,V6,V7,V8)
最初的研究论文中,COCO中有91个对象类别。然而,在2014年的第一次发布中,仅发布了80个标记和分割图像的对象类别。2014年发布之后,2017年发布了后续版本。详细的类别如下:
ID
OBJECT (PAPER)
OBJECT (2014 REL.)
OBJECT (2017 REL.)
SUPER CATEGORY
1
person
person
person
person
2
bicycle
bicycle
bicycle
vehicle
3
car
car
car
vehicle
4
motorcycle
motorcycle
motorcycle
vehicle
5
airplane
airplane
airplane
vehicle
6
bus
bus
bus
vehicle
7
train
train
train
vehicle
8
truck
truck
truck
vehicle
9
boat
boat
boat
vehicle
10
trafficlight
traffic light
traffic light
outdoor
11
fire hydrant
fire hydrant
fire hydrant
outdoor
12
street
sign
13
stop sign
stop sign
stop sign
outdoor
14
parking meter
parking meter
parking meter
outdoor
15
bench
bench
bench
outdoor
16
bird
bird
bird
animal
17
cat
cat
cat
animal
18
dog
dog
dog
animal
19
horse
horse
horse
animal
20
sheep
sheep
sheep
animal
21
cow
cow
cow
animal
22
elephant
elephant
elephant
animal
23
bear
bear
bear
animal
24
zebra
zebra
zebra
animal
25
giraffe
giraffe
giraffe
animal
26
hat
accessory
27
backpack
backpack
backpack
accessory
28
umbrella
umbrella
umbrella
accessory
29
shoe
accessory
30
eye glasses
accessory
31
handbag
handbag
handbag
accessory
32
tie
tie
tie
accessory
33
suitcase
suitcase
suitcase
accessory
34
frisbee
frisbee
frisbee
sports
35
skis
skis
skis
sports
36
snowboard
snowboard
snowboard
sports
37
sports ball
sports ball
sports ball
sports
38
kite
kite
kite
sports
39
baseball bat
baseball bat
baseball bat
sports
40
baseball glove
baseball glove
baseball glove
sports
41
skateboard
skateboard
skateboard
sports
42
surfboard
surfboard
surfboard
sports
43
tennis racket
tennis racket
tennis racket
sports
44
bottle
bottle
bottle
kitchen
45
plate
kitchen
46
wine glass
wine glass
wine glass
kitchen
47
cup
cup
cup
kitchen
48
fork
fork
fork
kitchen
49
knife
knife
knife
kitchen
50
spoon
spoon
spoon
kitchen
51
bowl
bowl
bowl
kitchen
52
banana
banana
banana
food
53
apple
apple
apple
food
54
sandwich
sandwich
sandwich
food
55
orange
orange
orange
food
56
broccoli
broccoli
broccoli
food
57
carrot
carrot
carrot
food
58
hot dog
hot dog
hot dog
food
59
pizza
pizza
pizza
food
60
donut
donut
donut
food
61
cake
cake
cake
food
62
chair
chair
chair
furniture
63
couch
couch
couch
furniture
64
potted plant
potted plant
potted plant
furniture
65
bed
bed
bed
furniture
66
mirror
furniture
67
dining table
dining table
dining table
furniture
68
window
furniture
69
desk
furniture
70
toilet
toilet
toilet
furniture
71
door
furniture
72
tv
tv
tv
electronic
73
laptop
laptop
laptop
electronic
74
mouse
mouse
mouse
electronic
75
remote
remote
remote
electronic
76
keyboard
keyboard
keyboard
electronic
77
cell phone
cell phone
cell phone
electronic
78
microwave
microwave
microwave
appliance
79
oven
oven
oven
appliance
80
toaster
toaster
toaster
appliance
81
sink
sink
sink
appliance
82
refrigerator
refrigerator
refrigerator
appliance
83
blender
appliance
84
book
book
book
indoor
85
clock
clock
clock
indoor
86
vase
vase
vase
indoor
87
scissors
scissors
scissors
indoor
88
teddy bear
teddy bear
teddy bear
indoor
89
hair drier
hair drier
hair drier
indoor
90
toothbrush
toothbrush
toothbrush
indoor
91
hair brush
indoor
可以看到,2014年和2017年发布的对象列表是相同的,它们是论文中最初91个对象类别中的80个对象。所以在转换的时候,要重新对类别做映射,映射函数如下:
def coco91_to_coco80_class(): # converts 80-index (val2014) to 91-index (paper)# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/# a = np.loadtxt(‘data/coco.names’, dtype=‘str’, delimiter=‘\n’)# b = np.loadtxt(‘data/coco_paper.names’, dtype=‘str’, delimiter=‘\n’)# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknetx = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,None, 73, 74, 75, 76, 77, 78, 79, None]return x
接下来,开始格式转换,工程的目录如下:
coco:存放解压后的数据集。
-out:保存输出结果。
-coco2yolo.py:转换脚本。
转换代码如下:
import json
import glob
import os
import shutil
from pathlib import Path
import numpy as np
from tqdm import tqdmdef make_folders(path=‘…/out/’):# Create foldersif os.path.exists(path):shutil.rmtree(path) # delete output folderos.makedirs(path) # make new output folderos.makedirs(path + os.sep + ‘labels’) # make new labels folderos.makedirs(path + os.sep + ‘images’) # make new labels folderreturn pathdef convert_coco_json(json_dir=‘./coco/annotations_trainval2017/annotations/’):jsons = glob.glob(json_dir + ‘*.json’)coco80 = coco91_to_coco80_class()# Import jsonfor json_file in sorted(jsons):fn = ‘out/labels/%s/’ % Path(json_file).stem.replace(‘instances_’, ‘’) # folder namefn_images = ‘out/images/%s/’ % Path(json_file).stem.replace(‘instances_’, ‘’) # folder nameos.makedirs(fn,exist_ok=True)os.makedirs(fn_images,exist_ok=True)with open(json_file) as f:data = json.load(f)print(fn)# Create image dictimages = {‘%g’ % x[‘id’]: x for x in data[‘images’]}# Write labels filefor x in tqdm(data[‘annotations’], desc=‘Annotations %s’ % json_file):if x[‘iscrowd’]:continueimg = images[‘%g’ % x[‘image_id’]]h, w, f = img[‘height’], img[‘width’], img[‘file_name’]file_path=‘coco/’+fn.split(‘/’)[-2]+“/”+f# The Labelbox bounding box format is [top left x, top left y, width, height]box = np.array(x[‘bbox’], dtype=np.float64)box[:2] += box[2:] / 2 # xy top-left corner to centerbox[[0, 2]] /= w # normalize xbox[[1, 3]] /= h # normalize yif (box[2] > 0.) and (box[3] > 0.): # if w > 0 and h > 0with open(fn + Path(f).stem + ‘.txt’, ‘a’) as file:file.write(‘%g %.6f %.6f %.6f %.6f\n’ % (coco80[x[‘category_id’] - 1], *box))file_path_t=fn_images+fprint(file_path,file_path_t)shutil.copy(file_path,file_path_t)def coco91_to_coco80_class(): # converts 80-index (val2014) to 91-index (paper)# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/# a = np.loadtxt(‘data/coco.names’, dtype=‘str’, delimiter=‘\n’)# b = np.loadtxt(‘data/coco_paper.names’, dtype=‘str’, delimiter=‘\n’)# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknetx = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,None, 73, 74, 75, 76, 77, 78, 79, None]return xconvert_coco_json()
开始运行:
转换完成后,验证转换的结果:
import cv2
import osdef draw_box_in_single_image(image_path, txt_path):# 读取图像image = cv2.imread(image_path)# 读取txt文件信息def read_list(txt_path):pos = []with open(txt_path, ‘r’) as file_to_read:while True:lines = file_to_read.readline() # 整行读取数据if not lines:break# 将整行数据分割处理,如果分割符是空格,括号里就不用传入参数,如果是逗号, 则传入‘,‘字符。p_tmp = [float(i) for i in lines.split(’ ‘)]pos.append(p_tmp) # 添加新读取的数据# Efield.append(E_tmp)passreturn pos# txt转换为boxdef convert(size, box):xmin = (box[1]-box[3]/2.)*size[1]xmax = (box[1]+box[3]/2.)*size[1]ymin = (box[2]-box[4]/2.)*size[0]ymax = (box[2]+box[4]/2.)*size[0]box = (int(xmin), int(ymin), int(xmax), int(ymax))return boxpos = read_list(txt_path)print(pos)tl = int((image.shape[0]+image.shape[1])/2)lf = max(tl-1,1)for i in range(len(pos)):label = str(int(pos[i][0]))print(‘label is ‘+label)box = convert(image.shape, pos[i])image = cv2.rectangle(image,(box[0], box[1]),(box[2],box[3]),(0,0,255),2)cv2.putText(image,label,(box[0],box[1]-2), 0, 1, [0,0,255], thickness=2, lineType=cv2.LINE_AA)passif pos:cv2.imwrite(’./Data/see_images/{}.png’.format(image_path.split(’\‘)[-1][:-4]), image)else:print(‘None’)img_folder = “./out/images/val2017”
img_list = os.listdir(img_folder)
img_list.sort()label_folder = “./out/labels/val2017”
label_list = os.listdir(label_folder)
label_list.sort()
if not os.path.exists(’./Data/see_images’):os.makedirs(‘./Data/see_images’)
for i in range(len(img_list)):image_path = img_folder + “\” + img_list[i]txt_path = label_folder + “\” + label_list[i]draw_box_in_single_image(image_path, txt_path)
结果展示:
配置yolov8环境
可以直接安装requirements.txt里面所有的库文件,执行安装命令:
pip install -r requirements.txt
如果不想安装这么多库文件,在运行的时候,查看缺少哪个库,就安装哪个库,比如我的环境:
pip install thop
我的本地只缺少了这个库文件。
相关文章:

Yolov8的详解与实战-深度学习目标检测
Yolov8的详解与实战- 文章目录 摘要 模型详解 C2F模块 Loss head部分 模型实战 训练COCO数据集 下载数据集 COCO转yolo格式数据集(适用V4,V5,V6,V7,V8) 配置yolov8环境 训练 测试 训练自定义数据集 Labelme…...

Python(1) 做一个随机数的游戏
有关变量的,其实就是 可以直接打印对应变量。 并且最后倒数第二行就是可以让两个数进行交换。 Py快捷键“ALTP 就是显示上一句的代码。 —————————————————————————————— 字符串 用 双引号或者单引号 。 然后 保证成双出现即可 要是…...

【Bootstrap V4系列】学习入门教程之 组件-导航条(Navbar)
Bootstrap V4系列 学习入门教程之 组件-导航条(Navbar) 导航条(Navbar)一、How it works二、Supported content 支持的内容2.1 Brand 品牌2.2 Nav 导航2.3 Forms 表格 三、Color schemes 配色方案四、Containers 容器五、Placemen…...

[Java实战]Spring Security 添加验证码(二十三)
[Java实战]Spring Security 添加验证码(二十三) 在现代的 Web 应用中,验证码是防止恶意攻击(如暴力破解、自动注册等)的重要手段之一。Spring Security 是一个功能强大的安全框架,提供了用户认证、授权等功…...

万文c++继承
1、继承的概念与定义 1.1继承的概念 继承:是c代码复用的手段,允许在原有的基础上扩展,在此之前都是函数层次的复用,继承是类设计层次的复用。 下面有两个类Student和Teacher都有姓名/地址/电话/年龄等成员变量。都有identity身…...
HTTP GET报文解读
考虑当浏览器发送一个HTTP GET报文时,通过Wireshark 俘获到下列ASCII字符串: GET /cs453/index.html HTTP/1.1 Host: gaia.cs.umass.edu User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.2) Gecko/20040804 Netscape/7.2 (ax) Acc…...

Linux grep -r 查找依赖包是否存在依赖类 Class
方法一:通过 Linux ,grep -r ClassPath 命令 grep -f org.apache.kafka.connect.source.SourceRecord在 jar 包所在 lib 或者 lib/plugins 目录下执行,grep -r, flink-sql-connector-sqlserver-cdc-3.3.0.jar 中此 kafka Source…...

41:像素坐标与实际坐标转化
采用上面的算子 将像素坐标点转换为实际坐标 image_points_to_world_plane(CamParam, Worldpose, Row, Column, m, X, Y) 第一个参数:标定得到的内参--根据标定助手得到的 第二个参数:标定得到的外参--根据标定助手得到的 第三个参数:计算…...

大某麦演唱会门票如何自动抢
引言 仅供学习研究,欢迎交流 抢票难,难于上青天!无论是演唱会、话剧还是体育赛事,大麦网的票总是秒光。大麦网是国内知名的票务平台,热门演出票往往一票难求。手动抢票不仅耗时,还容易错过机会。作为一名…...
人工智能外呼系统:重构智能交互的全维度进化
在数字化浪潮席卷全球的今天,人工智能外呼系统正以其颠覆性的技术革新,重新定义企业与客户的沟通范式。这一融合语音识别、自然语言处理与机器学习的智能系统,不仅实现了从 “机械应答” 到 “智慧交互” 的跨越,更在金融、医疗、…...

LVS负载均衡群集和keepalive
目录 一. 集群概述 1.1 集群的定义 1.2 集群的分类 1. 高可用集群 HA 2. 高性能运输群集 HPC 3.负载均衡群集 LB 4. 分布式存储集群 二. LVS概述 2.1 LVS的定义 2.2 LVS的工作原理 2.3 LVS 的三种工作模式 2.4 LVS 三种工作模式的对比 2.5 LVS 调度算法 1. 静态…...
在 Excel 中有效筛选重复元素
如果是新版excel UNIQUE(FILTER(D2:D19, COUNTIF(D2:D19, D2:D19)>1)) 旧版 Excel(如 2019/2016/2013) 使用方法:在 E2 单元格输入此公式。按 Ctrl Shift Enter(数组公式)。向下拖动填充至空白行为止。 IFERROR…...

Apache Pulsar 消息、流、存储的融合
Apache Pulsar 消息、流、存储的融合 消息队列在大层面有两种不同类型的应用,一种是在线系统的message queue,一种是流计算,data pipeline的streaming高throughout,一致性较低,延迟较差的过程。 存算分离 扩容和缩容快…...

最优化方法Python计算:有约束优化应用——线性可分问题支持向量机
设问题的数据样本点 ( x i , y i ) (\boldsymbol{x}_i,y_i) (xi,yi), x i ∈ R n \boldsymbol{x}_i\in\text{R}^n xi∈Rn, y i 1 y_i\pm1 yi1, i 1 , 2 , ⋯ , m i1,2,\cdots,m i1,2,⋯,m。由于标签数据 y i ∈ { − 1 , 1 } y_i\…...
Linux 离线安装 Docker 和 Docker Compose 最新版 的完整指南
一、准备工作 1. 下载安装包(需在有网络的机器操作): Docker 引擎:从官方仓库下载最新二进制包 wget https://download.docker.com/linux/static/stable/x86_64/docker-24.0.6.tgzDocker Compose:下载最新二进制…...

SpringBoot学习(上) , SpringBoot项目的创建(IDEA2024版本)
目录 1. SpringBoot介绍 SpringBoot特点 2. SpringBoot入门 2.1 创建SpringBoot项目 Spring Initialize 第一步: 选择创建项目 第二步: 选择起步依赖 第三步: 查看启动类 2.2 springboot父项目 2.3 测试案例 2.3.1 数据库 2.3.2 生成代码 1. SpringBoot介绍 Spring B…...
数据结构(四)——栈的应用—数制转换
利用栈进行数制转换: 十进制转换八进制:先将十进制数除以八得到余数,余数入栈,然后将得到的商继续除以八,直到商为零 #include <stdio.h> #include <stdlib.h>#define MAXSIZE 100//数制转换//定义链表节…...
多视角系统,视角之间的切换,输入操作。无人机Pawn视角的实现
一.创建自己的PlayerController。它相当于是灵魂,穿梭在不同Pawn之间。也即是切换视角。不同输入的响应也写在这里。这样即使,都有鼠标操作,也能区分。避免了代码的重复耦合。也可以叫做视角系统。 class LZJGAMEMODE_API ALZJPlayerControl…...

【Redis 进阶】哨兵模式
思维导图: 一、哨兵模式概述 (一)传统主从复制模式的局限性 在传统的Redis主从复制架构中,若主节点发生故障,运维人员需手动执行故障转移操作,将一个从节点提升为新主节点,并逐一通知所有客户…...
掌控随心 - 服务网格的流量管理艺术 (Istio 实例)
掌控随心 - 服务网格的流量管理艺术 (Istio 实例) 想象一下,没有服务网格的时候,我们要实现像“将 1% 的用户流量导入到新版本应用”、“根据用户设备类型访问不同后端”、“模拟下游服务故障”这类高级流量策略,通常需要在代码、负载均衡器、API 网关等多个地方进行复杂且分…...
在服务器排查java某个线程导致CPU飙高教程
🧩 第一步:确定是哪个线程占用 CPU 高 1.1 使用 top 或 htop 命令查看高 CPU 的 Java 进程 top -Hp <Java进程PID>-H 表示显示线程级别;-p 后面跟 Java 主进程的 PID;你会看到各个线程的 CPU 使用情况,找出使用…...
电子商城后台管理平台-Flask Vue项目开发
电子商城后台管理系统 电子商城后台管理平台-Flask 项目开发 文章目录 前言网课内容数据库参数用户模块/user/前端LESS 的语法使用LESS 的特点 ui登录页面主页页面头部左边aside 菜单main主体后端main页面设置用户-角色-权限商品分类商品信息图片保存到项目里面订单数据展示 网…...
Lettuce 节点刷新、连接优化与 Spring 升级适配全解析:从环境约束到生产验证
引言 在分布式系统中,Redis 作为高性能缓存中间件被广泛使用。随着 Spring 生态的迭代(尤其是 Spring Boot 2.0 的普及),Lettuce 逐渐取代 Jedis 成为 Redis 客户端的 “默认选择”。但开发者常面临三个核心问题:Let…...

CVE-2025-31258 macOS远程视图服务沙箱逃逸漏洞PoC已公开
苹果公司近日针对macOS系统中新披露的CVE-2025-31258漏洞发布补丁,该漏洞可能允许恶意应用程序突破沙箱限制,获取未授权的系统资源访问权限。在安全研究员Seo Hyun-gyu公开概念验证(PoC)利用代码后,该漏洞已在macOS Se…...
UDP协议详细讲解及C++代码实例
目录 一、UDP协议概述二、UDP通信流程1)数据传输2)无连接 三、关键点解析1) 套接字创建2)无连接特性3)数据传输 四、总结 UDP协议详细讲解及C代码实例 一、UDP协议概述 UDP(User Datagram Protocol,用户数据报协议&a…...

武汉大学无人机视角下的多目标指代理解新基准!RefDrone:无人机场景指代表达理解数据集
作者:Zhichao Sun, Yepeng Liu, Huachao Zhu, Yuliang Gu, Yuda Zou, Zelong Liu, Gui-Song Xia, Bo Du, Yongchao Xu 单位:武汉大学计算机学院 论文标题:RefDrone: A Challenging Benchmark for Drone Scene Referring Expression Compreh…...

【递归、搜索和回溯】二叉树中的深搜
个人主页 : zxctscl 专栏 【C】、 【C语言】、 【Linux】、 【数据结构】、 【算法】 如有转载请先通知 文章目录 前言1 2331. 计算布尔二叉树的值1.1 分析1.2 代码 2 129. 求根节点到叶节点数字之和2.1 分析2.2 代码 3 814. 二叉树剪枝3.1 分析3.2 代码 4 98. 验证…...

Algolia - Docsearch的申请配置安装【以踩坑解决版】
👨🎓博主简介 🏅CSDN博客专家 🏅云计算领域优质创作者 🏅华为云开发者社区专家博主 🏅阿里云开发者社区专家博主 💊交流社区:运维交流社区 欢迎大家的加入!…...

Linux513 rsync本地传输 跨设备传输 一
ping节点bPing通 仅主机模式不需要设置网关节点a也可以Ping通节点b 同步成功 下载文件夹成功 今日源码 节点a 节点b...

leetcode 383. Ransom Note
题目描述 代码 class Solution { public:bool canConstruct(string ransomNote, string magazine) {vector<int> table(26,0);for(char ch : magazine){table[ch-a];}for(char ch : ransomNote){table[ch-a]--;if(table[ch-a] < 0)return false;}return true;} };...