C语言指针深入详解(二):const修饰指针、野指针、assert断言、指针的使用和传址调用
目录
一、const修饰指针
(一)const修饰变量
(二)const 修饰指针变量
二、野指针
(一)野指针成因
1、指针未初始化
2、指针越界访问
3、指针指向的空间释放
(二)如何规避野指针
1、指针初始化
2、小心指针越界
3、指针变量不再使用时,及时置NULL,指针使用之前检查有效性
4、避免返回局部变量的地址
三、assert断言
四、指针的使用和传址调用
(一)strlen的模拟实现
(二)传值调用和传址调用
结语
🔥个人主页:艾莉丝努力练剑
🍓专栏传送门:《C语言》
🍉学习方向:C/C++方向
⭐️人生格言:为天地立心,为生民立命,为往圣继绝学,为万世开太平
前言:前面几篇文章介绍了c语言的一些知识,包括循环、数组、函数、VS实用调试技巧、函数递归、操作符等,在这篇文章中,我将继续介绍指针的一些重要知识点!由于指针的内容较多,博主将会分为六篇博客介绍,这是第二篇!对指针感兴趣的友友们可以在评论区一起交流学习!
一、const修饰指针
(一)const修饰变量
变量是可以修改的,如果把变量的地址交给一个指针变量,通过指针变量的也可以修改这个变量。
但是如果我们希望一个变量加上一些限制,不能被修改,怎么做呢?这就是const的作用。
#include <stdio.h>int main()
{int m = 0;m = 20;//m是可以修改的 const int n = 0;n = 20;//n是不能被修改的 return 0;
}
上述代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n就行修改,就不符合语法规则,就报错,致使没法直接修改n。
但是如果我们绕过n,使用n的地址,去修改n就能做到了,虽然这样做是在打破语法规则。
#include <stdio.h>int main()
{const int n = 0;printf("n = %d\n", n);int* p = &n;*p = 20;printf("n = %d\n", n);return 0;
}
输出结果:
程序运行结果
我们可以看到这里一个确实修改了,但是我们还是要思考一下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让p拿到n的地址也不能修改n,那接下来怎么做呢?
(二)const 修饰指针变量
一般来讲const修饰指针变量,可以放在*的左边,也可以放在*的右边,意义是不一样的。
int * p;//没有const修饰?
int const * p;//const 放在*的左边做修饰
int * const p;//const 放在*的右边做修饰
具体分析一下:
代码1:测试无const修饰的情况
#include <stdio.h>void test1()
{int n = 10;int m = 20;int* p = &n;*p = 20;//ok?p = &m; //ok?
}
代码2:测试const放在*的左边情况
#include <stdio.h>void test2()
{int n = 10;int m = 20;const int* p = &n;*p = 20;//ok?p = &m; //ok?
}
代码3:测试const放在*的右边情况
#include <stdio.h>
void test3()
{int n = 10;int m = 20;int * const p = &n;*p = 20; //ok?p = &m; //ok?}
代码4:测试*的左右两边都有const
#include <stdio.h>
void test4()
{int n = 10;int m = 20;int const * const p = &n;*p = 20; //ok?p = &m; //ok?}int main()
{//测试⽆const修饰的情况 test1();//测试const放在*的左边情况 test2();//测试const放在*的右边情况 test3();//测试*的左右两边都有const test4();return 0;
}
结论:const修饰指针变量的时候
(1)const如果放在 * 的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。 但是指针变量本身的内容可变。
(2)const如果放在 * 的右边,修饰的是指针变量本身,保证了指针变量的内容不能修改,但是指针指 向的内容,可以通过指针改变。
二、野指针
概念:野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)。
(一)野指针成因
野指针的成因主要分为指针未初始化、指针越界访问、指针指向的空间释放这三种,我们这里通过代码了解一下,理由我标注在代码的注释部分哩。
1、指针未初始化
#include <stdio.h>int main()
{ int *p;//局部变量指针未初始化,默认为随机值 *p = 20;return 0;
}
2、指针越界访问
#include <stdio.h>int main()
{int arr[10] = {0};int *p = &arr[0];int i = 0;for(i = 0; i <= 11; i++){//当指针指向的范围超出数组arr的范围时,p就是野指针 *(p++) = i;}return 0;
}
3、指针指向的空间释放
#include <stdio.h>int* test()
{int n = 100;return &n;
}int main()
{int*p = test();printf("%d\n", *p);return 0;
}
(二)如何规避野指针
1、指针初始化
2、小心指针越界
3、指针变量不再使用时,及时置NULL,指针使用之前检查有效性
4、避免返回局部变量的地址
比如说造成野指针的第3个例子,不要返回局部变量的地址。
三、assert断言
assert.h 头文件定义了宏 assert() ,用于在运行时确保程序符合指定条件,如果不符合,就报
错终止运行。这个宏常常被称为“断言”。
assert(p != NULL);
上⾯代码在程序运行到这一行语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序继续运行,否则就会终止运行,并且给出报错信息提示。
assert() 宏接受一个表达式作为参数。如果该表达式为真(返回值非零), assert() 不会产生任何作用,程序继续运行。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误流 stderr 中写入一条错误信息,显⽰没有通过的表达式,以及包含这个表达式的文件名和行号。
assert() 的使用对程序员是非常友好的,使用 assert() 有几个好处:它不仅能自动标识文件和出问题的行号,还有一种无需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问题,不需要再做断言,就在 #include <assert.h> 语句的前面,定义一个宏 NDEBUG 。
#define NDEBUG
#include <assert.h>
重新编译程序,编译器就会禁用文件中所有的 assert() 语句。如果程序又出现问题,可以移
除这条 #define NDEBUG 指令(或者把它注释掉),再次编译,这样就重新启用了 assert() 语
句。
assert() 的缺点是,因为引入了额外的检查,增加了程序的运行时间。
一般我们可以在 Debug 中使用,在 Release 版本中选择禁用 assert 就行,在 VS 这样的集成开
发环境中,在 Release 版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,
在 Release 版本不影响用户使用时程序的效率。
四、指针的使用和传址调用
(一)strlen的模拟实现
库函数strlen的功能是求字符串长度,统计的是字符串中 \0 之前的字符的个数。
下面是函数原型:
size_t strlen ( const char * str );
参数str接收一个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回长度。
如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是 \0 字符,计数器就+1,这样直到 \0 就停止。
代码实现:
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<assert.h>int my_strlen(const char* str)
{int count = 0;assert(str);while (*str){count++;str++;}return count;
}int main()
{int len = my_strlen("abcdef");printf("%d\n", len);return 0;
}
(二)传值调用和传址调用
我们学习指针的目的是使用指针解决问题,那有什么问题是非指针解决不可的呢?有的兄弟,有的。我们在这里就举一个例子:要求写一个函数,能够交换两个整型变量的值。
我们尝试了一番,写出了这样的代码:
#define _CRT_SECURE_NO_WARNINGS 1#include <stdio.h>void Swap1(int x, int y)
{int tmp = x;x = y;y = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap1(a, b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}
输入两个值(中间记得空格) 试试能不能行得通,输出结果:
啊嘞?这是什么情况!我们发现代码没产生实际交换的效果!这是为什么哩?
调试一下,我又给友友们请来了我们的老朋友、老军师——监视 !
注意:不知道监视怎么搞的友友们可以去看博主的这篇博客:VS2022进行监视功能的步骤
好啦好啦,我们话不多说,调试一下试试:
真相大白了,我们发现在main函数内部,创建了a和b,a的地址是0x00cffdd0,b的地址是0x00cffdc4,在调用Swap1函数时,将a和b传递给了Swap1函数,在Swap1函数内部创建了形参x和y接收a和b的值,但是 x的地址是0x00cffcec,y的地址是0x00cffcf0,x和y确实接收到了a和b的值,不过x的地址和a的地址不一样,y的地址和b的地址不一样,相当于x和y是独立的空间,那么在Swap1函数内部交换x和y的值, 自然不会影响a和b,当Swap1函数调用结束后回到main函数,a和b的没法交换。Swap1函数在使用的时候,是把变量本身直接传递给了函数,这种调用函数的方式我们之前在函数的时候就知道了,这种叫传值调用。
由此我们可以得出结论:实参传递给行参的时候,形参会单独创建一份临时空间来接受实参,对形参的修改不影响实参。
因此Swap1战败啦。
这下子怎么办哩?!
咱们当务之急是解决调用Swap函数时,Swap函数内部操作的就是main函数中的a和b,直接
将a和b的值交换了。那么就可以使用指针了,在main函数中将a和b的地址传递给Swap函数,Swap函数里边通过地址间接的操作main函数中的a和b,并达到交换的效果就好了。
代码实现:
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>void Swap2(int* px, int* py)
{int tmp = 0;tmp = *px;*px = *py;*py = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap2(&a, &b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}
事不宜迟,咱们赶紧测试一下!输出结果:
我们从这里可以看到实现成Swap2的方式,顺利完成了任务,这里调用Swap2函数的时候是将变量的地址传递给了函数,这种函数调用方式叫:传址调用。
传址调用,可以让函数和主调函数之间建立真正的联系,在函数内部可以修改主调函数中的变量;所以未来函数中只是需要主调函数中的变量值来实现计算,就可以采用传值调用。如果函数内部要修改主调函数中的变量的值,就需要传址调用。
结语
往期回顾:
C语言指针深入详解(一):内存和地址、指针变量和地址、指针变量类型的意义、指针运算
结语:本篇文章就到此结束了,本文为友友们分享了一些操作符相关的重要知识点,如果友友们有补充的话欢迎在评论区留言,下一期我们将继续介绍操作符剩下的一些重要知识点,感谢友友们的关注与支持!
相关文章:

C语言指针深入详解(二):const修饰指针、野指针、assert断言、指针的使用和传址调用
目录 一、const修饰指针 (一)const修饰变量 (二)const 修饰指针变量 二、野指针 (一)野指针成因 1、指针未初始化 2、指针越界访问 3、指针指向的空间释放 (二)如何规避野指…...

【unity游戏开发——编辑器扩展】使用EditorGUI的EditorGUILayout绘制工具类在自定义编辑器窗口绘制各种UI控件
注意:考虑到编辑器扩展的内容比较多,我将编辑器扩展的内容分开,并全部整合放在【unity游戏开发——编辑器扩展】专栏里,感兴趣的小伙伴可以前往逐一查看学习。 文章目录 前言常用的EditorGUILayout控件专栏推荐完结 前言 EditorG…...

Linux基础第三天
系统时间 date命令,date中文具有日期的含义,利用该命令可以查看或者修改Linux系统日期和时间。 基本格式如下: gecubuntu:~$ date gecubuntu:~$ date -s 日期时间 // -s选项可以设置日期和时间 文件权限 chmod命令,是英文…...

MoodDrop:打造一款温柔的心情打卡单页应用
我正在参加CodeBuddy「首席试玩官」内容创作大赛,本文所使用的 CodeBuddy 免费下载链接:腾讯云代码助手 CodeBuddy - AI 时代的智能编程伙伴 起心动念:我想做一款温柔的情绪应用 「今天的你,心情如何?」 有时候&#x…...

接口——类比摄像
最近迷上了买相机,大疆Pocket、Insta Go3、大疆Mini3、佳能50D、vivo徕卡人像大师(狗头),在买配件的时候,发现1/4螺口简直是神中之神,这个万能接口让我想到计算机设计中的接口,遂有此篇—— 接…...
【上位机——WPF】布局控件
布局控件 常用布局控件Panel基类Grid(网格)UniformGrid(均匀分布)StackPanel(堆积面板)WrapPanel(换行面板)DockerPanel(停靠面板)Canvas(画布布局)Border(边框)GridSplitter(分割窗口)常用布局控件 Grid:网格,根据自定义行和列来设置控件的布局StackPanel:栈式面板,包含的…...
深入解析Spring Boot与Kafka集成:构建高性能消息驱动应用
深入解析Spring Boot与Kafka集成:构建高性能消息驱动应用 引言 在现代分布式系统中,消息队列是实现异步通信和解耦的重要组件。Apache Kafka作为一种高性能、分布式的消息系统,被广泛应用于大数据和实时数据处理场景。本文将详细介绍如何在…...

二十、案例特训专题3【系统设计篇】web架构设计
一、前言 二、内容提要 三、单机到应用与数据分离 四、集群与负载均衡 五、集群与有状态无状态服务 六、ORM 七、数据库读写分离 八、数据库缓存Memcache与Redis 九、Redis数据分片 哈希分片如果新增分片会很麻烦,需要把之前数据取出来再哈希除模 一致性哈希分片是…...

【数据结构与算法】ArrayList 与顺序表的实现
目录 一、List 接口 1.1 List 接口的简单介绍 1.1 常用方法 二、顺序表 2.1 线性表的介绍 2.2 顺序表的介绍 2.3 顺序表的实现 2.3.1 前置条件:自定义异常 2.3.2 顺序表的初始化 2.3.2 顺序表的实现 三、ArrayList 实现类 3.1 ArrayList 的两种使用方式 3.2 Array…...
处理金融数据,特别是股票指数数据,以计算和分析RSRS(相对强度指数)
Python脚本,用于处理金融数据,特别是股票指数数据,以计算和分析RSRS(相对强度指数)指标。以下是代码的逐部分解释: 1. **导入库**: - `pandas`:用于数据处理和CSV文件操作。 - `numpy`:用于数值计算。 - `ElasticNet`:来自`sklearn.linear_model`,用于线性…...

【图像处理基石】OpenCV中都有哪些图像增强的工具?
OpenCV 图像增强工具系统性介绍 OpenCV 提供了丰富的图像增强工具,主要分为以下几类: 亮度与对比度调整 线性变换(亮度/对比度调整)直方图均衡化自适应直方图均衡化(CLAHE) 滤波与平滑 高斯滤波中值滤波双…...

WPS PPT设置默认文本框
被一个模板折磨了好久,每次输入文本框都是很丑的24号粗体还有行标,非常恶心,我甚至不知道如何描述自己的问题,非常憋屈,后来终于知道怎么修改文本框了。这种软件操作问题甚至不知道如何描述问题本身,非常烦…...

PostGIS实现矢量数据转栅格数据【ST_AsRaster】
ST_AsRaster函数应用详解:将矢量数据转换为栅格数据 [文章目录] 一、函数概述 二、函数参数与分组说明 三、核心特性与注意事项 四、示例代码 五、应用场景 六、版本依赖 七、总结 一、函数概述 ST_AsRaster是PostGIS中用于将几何对象(如点、线…...

FAST-DDS源码分析PDP(一)
准备开一个FAST-DDS源码分析系列,源码版本FAST-DDS 1.1.0版本。 FAST-DDS这种网络中间件是非常复杂的,所以前期先去分析每个类的作用是什么,然后在结合RTPS DOC,FAST-DDS DEMO,以及FAST-DDS的doc去串起来逻辑。 Builtin Discovery…...

python打卡day29@浙大疏锦行
知识点回顾 类的装饰器装饰器思想的进一步理解:外部修改、动态类方法的定义:内部定义和外部定义 作业:复习类和函数的知识点,写下自己过去29天的学习心得,如对函数和类的理解,对python这门工具的理解等&…...

【数据结构】2-3-1单链表的定义
数据结构知识点合集 知识点 单链表存储结构 优点:不要求大片连续空间,改变容量方便;缺点:不可随机存取,要耗费一定空间存放指针 /*单链表节点定义*/ typedef struct LNode{ElemType data;struct LNode *next; }LNo…...

贝塞尔曲线原理
文章目录 一、 低阶贝塞尔曲线1.一阶贝塞尔曲线2. 二阶贝塞尔曲线3. 三阶贝塞尔曲线 一、 低阶贝塞尔曲线 1.一阶贝塞尔曲线 如下图所示, P 0 P_0 P0, P 1 P_1 P1 是平面中的两点,则 B ( t ) B ( t ) B(t) 代表平面中的一段线段。…...

3D个人简历网站 4.小岛
1.模型素材 在Sketchfab上下载狐狸岛模型,然后转换为素材资源asset,嫌麻烦直接在网盘链接下载素材, Fox’s islandshttps://sketchfab.com/3d-models/foxs-islands-163b68e09fcc47618450150be7785907https://gltf.pmnd.rs/ 素材夸克网盘&a…...

创建型:原型模式
目录 1、核心思想 2、实现方式 2.1 基本结构 2.2 代码示例(Java) 3、适用场景 4、new与clone实际场景建议 1、核心思想 目的:通过复制(克隆)现有对象来创建新对象,而不是通过new关键字实例化。对于那…...
浅谈“量子计算应用:从基础原理到行业破局”
量子计算应用:从基础原理到行业破局 引言:量子计算为何成为科技革命新引擎? 量子计算利用量子力学原理(叠加态、纠缠态、量子干涉)突破经典计算的极限,在特定领域可实现指数级加速。根据中研普华预测,2025年全球量子计算市场规模将突破80亿美元,2035年可达8117亿美元。…...
Java面试攻略:从Spring Boot到微服务架构的深入探讨
Java面试攻略:从Spring Boot到微服务架构的深入探讨 场景设定 在一家知名互联网大厂的会议室里,资深面试官王老师正在对一位求职者谢飞机进行技术面试。谢飞机是一位幽默风趣的程序员,他的回答有时让人捧腹大笑。 第一轮:核心技…...
关于文件分片的介绍和应用
文件分片,顾名思义,就是将一个大文件分割成多个小的文件块(chunk)。每个文件块都是原始文件的一部分,并可以通过特定的方式将这些小文件块重新组装成原始文件。 1. 基本原理: 文件分片从底层来看,主要是对…...

Tapered Off-Policy REINFORCE_ 如何为LLM实现稳定高效的策略优化?
Tapered Off-Policy REINFORCE: 如何为LLM实现稳定高效的策略优化? 在大语言模型(LLM)的微调领域,强化学习(RL)正成为提升复杂任务性能的核心方法。本文聚焦于一篇突破性论文,其提出的Tapered …...
使用lvm进行磁盘分区
使用lvm进行磁盘分区 目的: 使用/dev/vdb创建一个5g的逻辑卷挂载到/mnt/lvmtest 前提: /dev/vdb是一块干净的空磁盘,数据会被清空!!! 1. 创建物理卷(PV): pvcreate /dev/sdb2. 验证…...

[Java实战]Spring Boot整合Elasticsearch(二十六)
[Java实战]Spring Boot整合Elasticsearch(二十六) 摘要:本文通过完整的实战演示,详细讲解如何在Spring Boot项目中整合Elasticsearch,实现数据的存储、检索和复杂查询功能。包含版本适配方案、Spring Data Elasticsea…...

图像分割(1)U-net
一、整体结构 虽然说是几年前的产品,但是现在还在用,因为深度学习很多时候越是简单的网络用起来效果越好,而且一般是目标比较小的时候产生的分割问题。u-net的优势就是网络结构简单,适合小目标分割,所以一直用到现在&a…...
数位和:从定义到编程实现
1. 定义 数位和(Digit Sum)是指一个数的每一位数字相加的总和。例如: 123 的数位和:1 2 3 645 的数位和:4 5 9 2. 计算方法 计算数位和的通用步骤: 提取每一位数字:从右到左&…...

2025抓包工具Reqable手机抓包HTTPS亲测简单好用-快速跑通
前言 自安卓7.0高版本系统不在信任用户证书,https抓包方式市面查找方法太过复杂手机要root等,前置条件要求太高太复杂,看的头痛,今天一台电脑按步骤操作完即可抓包https,给大家搞定抓包https问题。支持直接编辑修改请求参…...

使用 Auto-Keras 进行自动化机器学习
使用 Auto-Keras 进行自动化机器学习 了解自动化机器学习以及如何使用 auto-keras 完成它。如今,机器学习并不是一个非常罕见的术语,因为像 DataCamp、Coursera、Udacity 等组织一直在努力提高他们的效率和灵活性,以便将机器学习的教育带给普…...
python 自动化教程
文章目录 前言整数变量字符串变量列表变量算术操作比较操作逻辑操作if语句for循环遍历列表while循环定义函数调用函数导入模块使用模块中的函数启动Chrome浏览器打开网页定位元素并输入内容提交表单关闭浏览器发送GET请求获取网页内容使…...