当前位置: 首页 > article >正文

《数据结构笔记三》:单链表(创建、插入、遍历、删除、释放内存等核心操作)

 不带头节点的单链表:(不带表头)

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//定义一个链表节点结构体
typedef struct Node
{/* data */int   data;           //表示节点数据域struct Node *next;    //表示节点指针域
}Node;//链表类型 (头指针)
typedef Node  *LinkedList;void initList(LinkedList  *list)
{*list = NULL;
}//插入新节点  头插法
void insertAtHead(LinkedList *list  int value)
{Node *newnode  = (Node*) malloc (sizeof(Node)); //为新节点开辟堆内存空间if(!newnode)//判断是否存在新节点{perror("内存分配失败!");exit(EXIT_FAILURE);}newNode -> data = value;newNode -> next = *list;    //新节点指向原头节点*list = Newnode;           //头指针指向新节点 
}//遍历链表
void traverseList(LinkedList list)
{Node *current = list;printf("链表元素:");while (current  !=  NULL){/* code */printf("%d ->",current -> data);current = currenr -> next;}printf("NULL\n");
}//删除节点
//删除第一个值为vulue的节点
void deleteNode(LinkedList *list , int value)
{if ( *list= NULL)  //判断是否为空链表{/* code */return ;}Node *current  = *list;Node *prev =  NULL;//查找待删除节点while (current != NULL && current->data != value){/* code */prev = current;current = current->next;}if(current = NULL)  return; //空值表示未查找到if (prev = NULL){*list = current->next;}else{prev->next = current->next;}free(current); //释放节点内存
}//释放内存
void freeList(Linkedlist *list)
{Node *current = *list;while (current != NULL){Node *temp = current;current = current->next;free(temp);    }*list = NULL; // 头指针置空
}int main() {// 测试不带表头链表LinkedList list1;initList(&list1);insertAtHead(&list1, 10);insertAtHead(&list1, 20);traverseList(list1); // 输出: 20 -> 10 -> NULLdeleteNode(&list1, 10);traverseList(list1); // 输出: 20 -> NULLfreeList(&list1);return 0;
}

 带头节点的单链表:(带表头)

#include<stdio.h>
#include<stdlib.h>
#include<string.h>//定义一个链表节点结构体
typedef struct Node {int data;struct Node *next;
} Node;// 链表类型(固定头节点)
typedef struct {Node *head;  // 头节点(不存储数据 NULL)
} LinkedList;//创建链表,初始化
void initList(LinkedList *list) {list->head = (Node *)malloc(sizeof(Node)); // 分配头节点if (!list->head) {perror("内存分配失败");exit(EXIT_FAILURE);}list->head->next = NULL; // 头节点的next初始化为NULL
}//插入节点(头插法)
void insertAtHead(LinkedList *list, int value) {Node *newNode = (Node *)malloc(sizeof(Node));if (!newNode) {perror("内存分配失败");exit(EXIT_FAILURE);}newNode->data = value;newNode->next = list->head->next; // 新节点指向原第一个节点list->head->next = newNode;       // 头节点指向新节点
}//遍历节点
void traverseList(LinkedList *list) {Node *current = list->head->next; // 跳过头节点printf("链表元素: ");while (current != NULL) {printf("%d -> ", current->data);current = current->next;}printf("NULL\n");
}//删除节点
void deleteNode(LinkedList *list, int value) {Node *prev = list->head;Node *current = prev->next;while (current != NULL && current->data != value) {prev = current;current = current->next;}if (current != NULL) {prev->next = current->next;free(current);}
}//释放内存
void freeList(LinkedList *list) {Node *current = list->head->next;while (current != NULL) {Node *temp = current;current = current->next;free(temp);}free(list->head);     // 释放头节点list->head = NULL;
}int main()
{// 测试带表头链表LinkedList list2;initList(&list2);insertAtHead(&list2, 100);insertAtHead(&list2, 200);traverseList(&list2); // 输出: 200 -> 100 -> NULLdeleteNode(&list2, 200);traverseList(&list2); // 输出: 100 -> NULLfreeList(&list2);return 0;}

插入操作,除了头插法,还有:中间插入、任意一位置插入(索引插入),尾插法。 

1. 插入操作的分类

插入方式适用场景时间复杂度
头插法快速在链表头部插入O(1)
尾插法在链表尾部追加数据O(n)
中间插入在指定值或位置后插入O(n)(查找时间)
按索引插入类似数组操作,按位置插入O(n)

2. 带表头 vs 不带表头的差异

操作不带表头链表带表头链表
头插法需直接修改外部头指针操作头节点的 next,无需修改外部指针
尾插法需要处理空链表(头指针为NULL)直接从 head->next 开始遍历
按索引插入插入位置0需特殊处理头指针统一从头节点开始计算位置
错误处理需检查头指针是否为NULL头节点始终存在,无需额外判空

3. 边界条件处理

  • 空链表插入

    • 不带表头:头指针为NULL时,尾插法直接赋值。

    • 带表头:头节点的 next 为NULL时,尾插法插入到 head->next

  • 越界插入

    • 按索引插入时,若 pos 超过链表长度,需提示错误并释放未使用的节点内存。

  • 重复值处理

    • 中间插入时,若有多个相同值的节点,默认操作第一个匹配的节点。

4. 内存管理

  • 内存分配失败:统一检查 malloc 返回值,避免程序崩溃。

  • 未使用的节点:在插入失败时(如越界),需释放已分配的节点内存。

总结

  • 插入灵活性:单链表的插入操作灵活,但需注意指针修改顺序(先连接新节点,再断开旧链接)。

  • 代码鲁棒性:始终处理边界条件(如空链表、越界位置)和内存分配失败。

  • 性能权衡:头插法最快(O(1)),尾插法和中间插入需要遍历(O(n))。

深度解析

1. 带表头 vs 不带表头

特性不带表头链表带表头链表
头指针指向第一个数据节点指向头节点(不存储数据)
插入/删除头节点需要特殊处理头指针统一操作,无需修改头指针
代码简洁性需要较多条件判断代码更统一,减少边界条件
内存占用节省一个头节点内存多一个头节点的内存占用
适用场景简单场景或内存敏感环境需要频繁操作头节点的情况

2. 关键操作分析

  • 插入操作

    • 不带表头链表插入头节点时,必须修改外部头指针(需传递二级指针)。

    • 带表头链表插入头节点时,只需修改头节点的 next 指针,外部头指针不变。

  • 删除操作

    • 不带表头链表删除头节点时,需更新头指针,否则会访问已释放的内存。

    • 带表头链表删除头节点时,只需处理头节点的 next 指针,无需关心外部指针。

  • 内存管理

    • 释放链表时,带表头链表需额外释放头节点。

    • 不带表头链表需确保头指针被正确置空,避免野指针。

      总结

    • 不带表头链表:适合简单场景,但需处理头指针的特殊情况。

    • 带表头链表:代码更简洁,适合需要频繁操作头节点的场景。

    • 通过对比实现,可以深入理解链表的核心逻辑和指针操作的精髓。

    • 共同注意点:确保内存正确释放,避免内存泄漏;操作指针时注意边界条件。

相关文章:

《数据结构笔记三》:单链表(创建、插入、遍历、删除、释放内存等核心操作)

不带头节点的单链表&#xff1a;&#xff08;不带表头&#xff09; #include<stdio.h> #include<stdlib.h> #include<string.h> //定义一个链表节点结构体 typedef struct Node {/* data */int data; //表示节点数据域struct Node *next; //…...

光伏行业如何利用SD-WAN优化分布式网络:替代MPLS、VPN、4G/5G的网络架构升级与云安全方案全解析

光伏行业的网络通信挑战与SD-WAN技术方案对比分析 光伏行业的分布式网络架构、远程站点多、通信环境复杂&#xff0c;以及对实时数据传输的高要求&#xff0c;使得网络架构成为影响行业数字化转型的重要因素。近年来&#xff0c;SD-WAN&#xff08;软件定义广域网&#xff09;…...

2025电工杯数学建模A题思路数模AI提示词工程

我发布的智能体链接&#xff1a;数模AI扣子是新一代 AI 大模型智能体开发平台。整合了插件、长短期记忆、工作流、卡片等丰富能力&#xff0c;扣子能帮你低门槛、快速搭建个性化或具备商业价值的智能体&#xff0c;并发布到豆包、飞书等各个平台。https://www.coze.cn/search/n…...

LLM | 论文精读 | NAACL 2025 | Clarify When Necessary:教语言模型何时该“问一句”再答!

&#x1f50d; 解读 NAACL 2025 重磅论文《Clarify When Necessary》&#xff1a;教语言模型何时该“问一句”再答&#xff01; &#x1f9e9; 一、现实问题&#xff1a;大模型“看不懂装懂”有多危险&#xff1f; 我们每天用的 ChatGPT、Claude 等大型语言模型&#xff08;LL…...

嵌入式鸿蒙openharmony应用开发环境搭建与工程创建实现

各位小伙伴大家好,本周开始分享鸿蒙开发相关的内容,从基础的配置方法到各种功能的实现,探索国产操作系统的奥秘。 第一:观察结果 第二:开源语言 ArkTS是鸿蒙应用开发中使用的TypeScript超集,提供了一套丰富的API来构建应用界面和逻辑。 第三:环境搭建 步骤 1 通过如…...

MDK的编译过程及文件类型全解

本章参考资料&#xff1a;MDK的帮助手册《ARM Development Tools》&#xff0c;点击MDK界面的“help->uVision Help”菜单可打开该文件。 关于ELF文件格式&#xff0c;参考配套资料里的《ELF文件格式》文件。 在本章中讲解了非常多的文件类型&#xff0c;学习时请跟着教程的…...

socc 19 echash论文部分解读

前言&#xff1a;论文还是得吃透才行&#xff0c;不然很多细节有问题 q1 object和data chunck哪一个大 根据论文&#xff0c;一个 data chunk 通常比一个 object 大&#xff0c;因为它是由多个 object 组合而成的 。 论文中提到&#xff0c;cross-coding 会将多个 object 组合…...

Linux Shell编程(八)

目录 Case语句 1--case格式 2--case使用案例&#xff1a;输入不容的数字&#xff0c;给出不同的结果 跳出循环 1--break 案例&#xff1a;执行十次时&#xff0c;跳出当前循环 完整流程 2--continue 案例&#xff1a;跳过2&#xff0c;4 输出 完整流程 Case语句 1--case格式 c…...

AI筑基,新质跃升|英码科技亮相华为广东新质生产力创新峰会,发布大模型一体机新品,助力产业智能化转型

5月15日&#xff0c;以“AI筑基&#xff0c;新质跃升”为主题的华为中国行2025广东新质生产力创新峰会在惠州圆满召开。本次峰会聚焦人工智能、算力基础设施等新ICT技术如何驱动“新质生产力”&#xff0c;共探广东高质量发展新路径。英码科技受邀出席本次峰会&#xff0c;并携…...

手机打电话时由对方DTMF响应切换多级IVR语音菜单(话术脚本与实战)

手机打电话时由对方DTMF响应切换多级IVR语音菜单 &#xff08;话术脚本与实战&#xff09; --本地AI电话机器人 上一篇&#xff1a;手机打电话时由对方DTMF响应切换多级IVR语音应答&#xff08;二&#xff09; 下一篇&#xff1a;手机打电话时由对方DTMF响应切换多级IVR语音…...

面试题——JDBC|Maven|Spring的IOC思想|DI思想|SpringMVC

目录 一、JDBC 1、jdbc连接数据库的基本步骤&#xff08;掌握**&#xff09; 2、Statement和PreparedStatement的区别 &#xff08;掌握***&#xff09; 二、Maven 1、maven的作用 2、maven 如何排除依赖 3、maven scope作用域有哪些&#xff1f; 三、Spring的IOC思想 …...

DETR3D- 3D Object Detection from Multi-view Images via 3D-to-2D Queries

MIT CORL 2021 纯视觉BEV方案transformer网络3D检测 paper&#xff1a;[2110.06922] DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries code&#xff1a;GitHub - WangYueFt/detr3d DNN提图像特征&#xff0c;FPN提多尺度特征 pts_bbox_head Detr3…...

SpringBoot3整合WebSocket

一、WebSocket简介 WebSocket协议是基于TCP的一种新的网络协议。它实现了浏览器与服务器全双工(full-duplex)通信&#xff0c;允许服务器主动向客户端推送数据。 与传统的 HTTP 请求-响应模式不同&#xff0c;WebSocket 在建立连接后&#xff0c;允许服务器和客户端之间进行双向…...

鸿蒙进阶——驱动框架UHDF 机制核心源码解读(一)

文章大纲 引言一、uhdf 概述二、uhdf 的核心参与角色1、drivers/hdf_core/adapter/uhdf2/manager/device_manager.c1.1、drivers/hdf_core/framework/core/manager/src/devmgr_service.c#DevmgrServiceGetInstance通过objectId获取IDevmgrService实例1.2、drivers/hdf_core/fra…...

电子电路:能认为电抗也是在做功吗?

阻抗是什么,我记得在交流电路中,阻抗是电阻、电感和电容的综合作用,用Z表示,单位是欧姆。 那阻抗和做功的关系,可能需要从阻抗的组成来分析。阻抗分为电阻部分和电抗部分,也就是 Z = R + jX,其中R是电阻,X是电抗(包括感抗和容抗)。而做功可能主要和电阻有关,因为电…...

DEEPSEEK + 其他工具的玩法

1. deepseek 即梦&#xff0c;批量生成图片 1&#xff09;给deepseek提出需求&#xff0c;让他生成一个海报设计框架 2&#xff09;让deepseek把上面的框架转换为文生图的提示词&#xff0c;方便用来制作图片 3&#xff09;将提示词复制到 即梦&#xff08;即梦电脑…...

Idea 配合 devtools 依赖 实现热部署

核心依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><scope>runtime</scope><optional>true</optional></dependency> yaml配置 spring: #…...

远程访问家里的路由器:异地访问内网设备或指定端口网址

在一些情况下&#xff0c;我们可能需要远程访问家里的路由器&#xff0c;以便进行设置调整或查看网络状态等&#xff0c;我们看看怎么操作&#xff1f; 1.开启远程访问 在路由本地电脑或手机&#xff0c;登录浏览器访问路由管理后台&#xff0c;并设置开启WEB远程访问。 2.内…...

根据参数量,如何推断需要多少数据才能够使模型得到充分训练?

✅ 一、经验法则&#xff1a;数据量 vs. 模型参数量 经典经验法则&#xff08;适用于监督学习场景&#xff09;&#xff1a; 训练样本数 ≈ 模型参数数量的 10~100 倍对于 BERT-base&#xff08;1.1亿参数&#xff09;&#xff0c;你通常需要 10亿到100亿标注样本 才能从头训…...

PycharmFlask 学习心得:路由(3-4)

对路由的理解&#xff1a; 用户输入网址 例如&#xff1a;http://localhost:5000/hello 浏览器会向这个地址发起一个 HTTP 请求&#xff08;比如 GET 请求&#xff09; 请求到达 Flask 的服务器 Flask 监听着某个端口&#xff08;如 5000&#xff09;&#xff0c;收到请求后…...

从逻辑学视角严谨证明数据加密的数学方法与实践

文章目录 一、加密数据的数学指纹&#xff1a;信息论基础1.1 加密检测的核心原理1.2 香农熵&#xff1a;量化信息的不确定性 二、统计检验方法&#xff1a;从随机性到加密性2.1 卡方检验的数学原理2.2 游程检验与序列相关性2.3 NIST统计测试套件 三、加密算法的特征识别3.1 对称…...

敦煌网测评从环境搭建到风控应对,精细化运营打造安全测评体系

自养号测评&#xff0c;抢占流量为快速提升产品权重和销量&#xff0c;很多卖家常采用自己养号补单测评的方式&#xff0c;技术搭建需要很多要素 一、硬件参数的关联性 在我们使用设备进行注册或操作账号的过程中&#xff0c;系统会记录下大量的系统与网络参数&#xff0c;其中…...

现代化SQLite的构建之旅——解析开源项目Limbo

现代化SQLite的构建之旅——解析开源项目Limbo 在当今飞速发展的技术世界中,轻量级且功能强大的数据库已成为开发者的得力助手。当我们谈论轻量级数据库时,SQLite无疑是一个举足轻重的名字。然而,随着技术的进步,我们对数据库的需求也变得更加多样化。这正是Limbo项目诞生…...

本地分支git push 报错 fatal: The current branch XXXX has no upstream branch.

背景&#xff1a; 我新建了一个本地分支叫做 “新增Saas修改需求”&#xff0c;然后当我提交代码执行 git push时报错如下&#xff0c;并且代码仓库中没有我新建的“新增Saas修改需求”这个分支。 报错信息&#xff1a; 解决方法&#xff1a; 直接采用方法2 ”git push -u orig…...

人工智能100问☞第27问:神经网络与贝叶斯网络的关系?

神经网络与贝叶斯网络是两种互补的智能模型:神经网络通过多层非线性变换从数据中学习复杂模式,擅长大规模特征提取和预测,而贝叶斯网络基于概率推理建模变量间的条件依赖关系,擅长处理不确定性和因果推断。两者的融合(如贝叶斯神经网络)结合了深度学习的表征能力与概率建…...

Python----循环神经网络(WordEmbedding词嵌入)

一、编码 当我们用数字来让电脑“认识”字符或单词时&#xff0c;最简单的方法是为每个字符或单词分配一个唯一的编号&#xff0c;然后用一个长长的向量来表示它。比如&#xff0c;假设“我”这个字在字典中的编号是第10个&#xff0c;那么它的表示就是一个很多0组成的向量&…...

ElasticSearch各种查询语法示例

1. 每种查询语法的区别与优缺点 Query DSL 区别: JSON 格式的结构化查询&#xff0c;功能强大&#xff0c;支持复杂查询逻辑&#xff0c;适用于 Elasticsearch 的核心查询场景。优点: 灵活&#xff0c;功能全面&#xff0c;支持全文搜索、精确匹配、聚合等&#xff1b;可组合…...

CUDA的设备,流处理器(Streams),核,线程块(threadblock),线程,网格(‌gridDim),块(block)和多gpu设备同步数据概念

CUDA的设备,流处理器&#xff0c;核&#xff0c;线程块&#xff08;threadblock&#xff09;&#xff0c;线程&#xff0c;网格&#xff08;‌gridDim&#xff09;&#xff0c;块&#xff08;block&#xff09;和多gpu设备同步数据概念 CUDA的设备,流处理器&#xff0c;核&…...

PyTorch的dataloader制作自定义数据集

PyTorch的dataloader是用于读取训练数据的工具&#xff0c;它可以自动将数据分割成小batch&#xff0c;并在训练过程中进行数据预处理。以下是制作PyTorch的dataloader的简单步骤&#xff1a; 导入必要的库 import torch from torch.utils.data import DataLoader, Dataset定…...

LeetCode 1340. 跳跃游戏 V(困难)

题目描述 给你一个整数数组 arr 和一个整数 d 。每一步你可以从下标 i 跳到&#xff1a; i x &#xff0c;其中 i x < arr.length 且 0 < x < d 。i - x &#xff0c;其中 i - x > 0 且 0 < x < d 。 除此以外&#xff0c;你从下标 i 跳到下标 j 需要满…...