OpenCV C++ 学习笔记(五):颜色空间转换、数值类型转换、图像混合、图像缩放
文章目录
- 颜色空间转换cvtColor
- 通道分离split
- 通道合并merge
- 数值类型转换convertTo
- 图片混合addWeighted
- 图片缩放resize
颜色空间转换cvtColor
cvtColor
是 OpenCV 中用于将图像从一种色彩空间转换为另一种色彩空间的函数。它非常适用于各种图像处理任务,如灰度化、颜色空间转换等。
CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
- src:源图像
- dst:输出图片
- code:转换码
cv::Mat gray;// 将BGR图像转换为灰度图像cv::cvtColor(src, gray, cv::COLOR_BGR2GRAY);
将RGB空间转换到灰度空间的通道融合比例0.299R + 0.587G + 0.114B
mpRawData = new unsigned short[width * height];for (int i = 0; i < count; ++i) {std::swap(mvScreenData[i * 3], mvScreenData[i * 3 + 2]);//0.299R + 0.587G + 0.114BmpRawData[i] = (unsigned short)((0.299 * image[i * 3] + 0.587 * image[i * 3 + 1] + 0.114 * image[i * 3 + 2]) * 255);}
enum ColorConversionCodes {COLOR_BGR2BGRA = 0, //!< add alpha channel to RGB or BGR imageCOLOR_RGB2RGBA = COLOR_BGR2BGRA,COLOR_BGRA2BGR = 1, //!< remove alpha channel from RGB or BGR imageCOLOR_RGBA2RGB = COLOR_BGRA2BGR,COLOR_BGR2RGBA = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel)COLOR_RGB2BGRA = COLOR_BGR2RGBA,COLOR_RGBA2BGR = 3,COLOR_BGRA2RGB = COLOR_RGBA2BGR,COLOR_BGR2RGB = 4,COLOR_RGB2BGR = COLOR_BGR2RGB,COLOR_BGRA2RGBA = 5,COLOR_RGBA2BGRA = COLOR_BGRA2RGBA,COLOR_BGR2GRAY = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"COLOR_RGB2GRAY = 7,COLOR_GRAY2BGR = 8,COLOR_GRAY2RGB = COLOR_GRAY2BGR,COLOR_GRAY2BGRA = 9,COLOR_GRAY2RGBA = COLOR_GRAY2BGRA,COLOR_BGRA2GRAY = 10,COLOR_RGBA2GRAY = 11,COLOR_BGR2BGR565 = 12, //!< convert between RGB/BGR and BGR565 (16-bit images)COLOR_RGB2BGR565 = 13,COLOR_BGR5652BGR = 14,COLOR_BGR5652RGB = 15,COLOR_BGRA2BGR565 = 16,COLOR_RGBA2BGR565 = 17,COLOR_BGR5652BGRA = 18,COLOR_BGR5652RGBA = 19,COLOR_GRAY2BGR565 = 20, //!< convert between grayscale to BGR565 (16-bit images)COLOR_BGR5652GRAY = 21,COLOR_BGR2BGR555 = 22, //!< convert between RGB/BGR and BGR555 (16-bit images)COLOR_RGB2BGR555 = 23,COLOR_BGR5552BGR = 24,COLOR_BGR5552RGB = 25,COLOR_BGRA2BGR555 = 26,COLOR_RGBA2BGR555 = 27,COLOR_BGR5552BGRA = 28,COLOR_BGR5552RGBA = 29,COLOR_GRAY2BGR555 = 30, //!< convert between grayscale and BGR555 (16-bit images)COLOR_BGR5552GRAY = 31,COLOR_BGR2XYZ = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"COLOR_RGB2XYZ = 33,COLOR_XYZ2BGR = 34,COLOR_XYZ2RGB = 35,COLOR_BGR2YCrCb = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"COLOR_RGB2YCrCb = 37,COLOR_YCrCb2BGR = 38,COLOR_YCrCb2RGB = 39,COLOR_BGR2HSV = 40, //!< convert RGB/BGR to HSV (hue saturation value), @ref color_convert_rgb_hsv "color conversions"COLOR_RGB2HSV = 41,COLOR_BGR2Lab = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"COLOR_RGB2Lab = 45,COLOR_BGR2Luv = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"COLOR_RGB2Luv = 51,COLOR_BGR2HLS = 52, //!< convert RGB/BGR to HLS (hue lightness saturation), @ref color_convert_rgb_hls "color conversions"COLOR_RGB2HLS = 53,COLOR_HSV2BGR = 54, //!< backward conversions to RGB/BGRCOLOR_HSV2RGB = 55,COLOR_Lab2BGR = 56,COLOR_Lab2RGB = 57,COLOR_Luv2BGR = 58,COLOR_Luv2RGB = 59,COLOR_HLS2BGR = 60,COLOR_HLS2RGB = 61,COLOR_BGR2HSV_FULL = 66,COLOR_RGB2HSV_FULL = 67,COLOR_BGR2HLS_FULL = 68,COLOR_RGB2HLS_FULL = 69,COLOR_HSV2BGR_FULL = 70,COLOR_HSV2RGB_FULL = 71,COLOR_HLS2BGR_FULL = 72,COLOR_HLS2RGB_FULL = 73,COLOR_LBGR2Lab = 74,COLOR_LRGB2Lab = 75,COLOR_LBGR2Luv = 76,COLOR_LRGB2Luv = 77,COLOR_Lab2LBGR = 78,COLOR_Lab2LRGB = 79,COLOR_Luv2LBGR = 80,COLOR_Luv2LRGB = 81,COLOR_BGR2YUV = 82, //!< convert between RGB/BGR and YUVCOLOR_RGB2YUV = 83,COLOR_YUV2BGR = 84,COLOR_YUV2RGB = 85,//! YUV 4:2:0 family to RGBCOLOR_YUV2RGB_NV12 = 90,COLOR_YUV2BGR_NV12 = 91,COLOR_YUV2RGB_NV21 = 92,COLOR_YUV2BGR_NV21 = 93,COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,COLOR_YUV2RGBA_NV12 = 94,COLOR_YUV2BGRA_NV12 = 95,COLOR_YUV2RGBA_NV21 = 96,COLOR_YUV2BGRA_NV21 = 97,COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,COLOR_YUV2RGB_YV12 = 98,COLOR_YUV2BGR_YV12 = 99,COLOR_YUV2RGB_IYUV = 100,COLOR_YUV2BGR_IYUV = 101,COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,COLOR_YUV2RGBA_YV12 = 102,COLOR_YUV2BGRA_YV12 = 103,COLOR_YUV2RGBA_IYUV = 104,COLOR_YUV2BGRA_IYUV = 105,COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,COLOR_YUV2GRAY_420 = 106,COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,//! YUV 4:2:2 family to RGBCOLOR_YUV2RGB_UYVY = 107,COLOR_YUV2BGR_UYVY = 108,//COLOR_YUV2RGB_VYUY = 109,//COLOR_YUV2BGR_VYUY = 110,COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,COLOR_YUV2RGBA_UYVY = 111,COLOR_YUV2BGRA_UYVY = 112,//COLOR_YUV2RGBA_VYUY = 113,//COLOR_YUV2BGRA_VYUY = 114,COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,COLOR_YUV2RGB_YUY2 = 115,COLOR_YUV2BGR_YUY2 = 116,COLOR_YUV2RGB_YVYU = 117,COLOR_YUV2BGR_YVYU = 118,COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,COLOR_YUV2RGBA_YUY2 = 119,COLOR_YUV2BGRA_YUY2 = 120,COLOR_YUV2RGBA_YVYU = 121,COLOR_YUV2BGRA_YVYU = 122,COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,COLOR_YUV2GRAY_UYVY = 123,COLOR_YUV2GRAY_YUY2 = 124,//CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY,COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,//! alpha premultiplicationCOLOR_RGBA2mRGBA = 125,COLOR_mRGBA2RGBA = 126,//! RGB to YUV 4:2:0 familyCOLOR_RGB2YUV_I420 = 127,COLOR_BGR2YUV_I420 = 128,COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,COLOR_RGBA2YUV_I420 = 129,COLOR_BGRA2YUV_I420 = 130,COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,COLOR_RGB2YUV_YV12 = 131,COLOR_BGR2YUV_YV12 = 132,COLOR_RGBA2YUV_YV12 = 133,COLOR_BGRA2YUV_YV12 = 134,//! DemosaicingCOLOR_BayerBG2BGR = 46,COLOR_BayerGB2BGR = 47,COLOR_BayerRG2BGR = 48,COLOR_BayerGR2BGR = 49,COLOR_BayerBG2RGB = COLOR_BayerRG2BGR,COLOR_BayerGB2RGB = COLOR_BayerGR2BGR,COLOR_BayerRG2RGB = COLOR_BayerBG2BGR,COLOR_BayerGR2RGB = COLOR_BayerGB2BGR,COLOR_BayerBG2GRAY = 86,COLOR_BayerGB2GRAY = 87,COLOR_BayerRG2GRAY = 88,COLOR_BayerGR2GRAY = 89,//! Demosaicing using Variable Number of GradientsCOLOR_BayerBG2BGR_VNG = 62,COLOR_BayerGB2BGR_VNG = 63,COLOR_BayerRG2BGR_VNG = 64,COLOR_BayerGR2BGR_VNG = 65,COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG,COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG,COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG,COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG,//! Edge-Aware DemosaicingCOLOR_BayerBG2BGR_EA = 135,COLOR_BayerGB2BGR_EA = 136,COLOR_BayerRG2BGR_EA = 137,COLOR_BayerGR2BGR_EA = 138,COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA,COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA,COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA,COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA,//! Demosaicing with alpha channelCOLOR_BayerBG2BGRA = 139,COLOR_BayerGB2BGRA = 140,COLOR_BayerRG2BGRA = 141,COLOR_BayerGR2BGRA = 142,COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA,COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA,COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA,COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA,COLOR_COLORCVT_MAX = 143
};
通道分离split
split
函数用于将一个多通道数组分割成多个单通道数组。这对于单独处理图像的每个颜色通道(例如在RGB图像中处理红色、绿色和蓝色通道)非常有用。
CV_EXPORTS void split(const Mat& src, Mat* mvbegin);
- src:输入图像
- mvbegin:分离后的Mat数组的地址
CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
- m:输入图像
- mv:分离后的的Mat数组,可以使用STL容器vector。
std::vector<cv::Mat> channels;
cv::split(img, channels); // 分割为B,G,R三个单通道// 现在channels[0]是蓝色通道, channels[1]是绿色通道, channels[2]是红色通道
通道合并merge
merge
函数则是做相反的操作,它接收多个单通道数组,并将它们组合成一个多通道数组。这在你独立处理完图像的各个通道后需要重新组合时特别有用。
CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);
- mv:合并的图像数组的地址
- count:合并的图像的个数
- dst:输出图片
CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
- mv:欲合并的图像数组,可以使用STL容器vector。
- dst:输出图片
std::vector<cv::Mat> channels;
cv::split(img, channels); // 分割为B,G,R三个单通道// 假设对某些通道进行了处理...cv::Mat mergedImg;
cv::merge(channels, mergedImg); // 合并回多通道图像
数值类型转换convertTo
用于将矩阵的数值类型转换为另一种类型。这在图像处理中特别有用,比如当你需要将图像数据从一种位深度转换到另一种(例如从 8 位转换到 32 位浮点数),或者你需要调整数值范围时。
void Mat::convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;src.convertTo(dst, type, alpha, beta);
dst
: 输出矩阵,它将存储转换后的结果。其大小和通道数与输入矩阵相同。type
: 指定目标矩阵的数据类型(如 CV_8U, CV_16U, CV_32F 等)。如果指定为 -1,则输出矩阵与输入矩阵具有相同类型。alpha
: 可选的比例因子,应用于源数组元素。默认值为 1。beta
: 可选的增量,添加到缩放值。默认值为 0。
// 加载灰度图像
cv::Mat src = cv::imread("path/to/image.jpg", cv::IMREAD_GRAYSCALE);// 目标图像
cv::Mat dst;// 转换类型并调整数值范围
src.convertTo(dst, CV_32F, 1.0/255, 0); // 将像素值映射到 [0, 1] 区间
在这个例子中,我们首先加载了一张灰度图像。然后使用 convertTo
方法将图像从 CV_8U
(默认的 8 位无符号整数格式)转换为 CV_32F
(32 位浮点数),同时通过设置 alpha
参数为 1.0/255
来将像素值从 [0, 255]
映射到 [0, 1]
。
不能进行原地运算
图片混合addWeighted
CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype = -1
);
src1
第一个输入图像(Mat 类型)alpha
第一个图像的权重系数(通常范围是 0~1)src2
第二个输入图像,必须与 src1 大小和类型相同beta
第二个图像的权重系数gamma
偏移量(scalar),可理解为亮度调节项dst
输出图像,与输入图像大小相同dtype
输出图像的数据深度,默认为 -1,表示自动匹配
计算公式
dst = src1 * alpha + src2 * beta + gamma;
所有运算都是逐像素进行的。
如果你想用作“图像叠加”或“图像混合”,可以设置 gamma = 0。
通常会设置 alpha + beta = 1 来保持图像亮度一致。
示例:图像叠加/融合
#include <opencv2/opencv.hpp>int main() {// 加载两张图像(需尺寸一致)cv::Mat img1 = cv::imread("image1.jpg");cv::Mat img2 = cv::imread("image2.jpg");if (img1.empty() || img2.empty()) {std::cout << "Could not open or find the images!" << std::endl;return -1;}cv::Mat blended;// 按照权重融合图像cv::addWeighted(img1, 0.7, // img1 权重 0.7img2, 0.3, // img2 权重 0.30.0, // gamma = 0blended);// 显示结果cv::imshow("Blended Image", blended);cv::waitKey(0);return 0;
}
两张图像必须具有相同的大小和通道数(可以是单通道或多通道)。如果只想使用一张图并调整其亮度,可以让 src2 = Mat::zeros(...)
。
可以用来实现:
- 图像透明度混合(如半透明水印)
- 图像渐变过渡
- 图像增强(调整亮度对比度)
示例:添加水印(透明文字或图像)
cv::Mat base = cv::imread("background.jpg");
cv::Mat overlay;
base.copyTo(overlay); // 创建副本// 在 overlay 上绘制半透明矩形或文字
cv::rectangle(overlay, cv::Rect(50,50,200,100), cv::Scalar(255,255,255), -1);
cv::addWeighted(base, 0.6, overlay, 0.4, 0, base);
图片缩放resize
CV_EXPORTS_W void resize( InputArray src, OutputArray dst,Size dsize, double fx = 0, double fy = 0,int interpolation = INTER_LINEAR
);
src
输入图像 (Mat)dst
输出图像 (Mat)dsize
输出图像的尺寸(宽 x 高),如 cv::Size(640, 480)fx
横向缩放比例(宽度方向),如果设定了 dsize 可为 0fy
纵向缩放比例(高度方向)interpolation
插值方法(决定缩放质量),常见选项如下:cv::INTER_NEAREST
最近邻插值(速度快,效果差)cv::INTER_LINEAR
双线性插值(默认,平衡速度与质量)cv::INTER_CUBIC
双三次插值(更高质量,速度慢)cv::INTER_AREA
区域插值(适合缩小图像)
放大建议使用 INTER_CUBIC 或 INTER_LINEAR
缩小建议使用 INTER_AREA
示例
方法一:指定目标尺寸
#include <opencv2/opencv.hpp>int main() {cv::Mat src = cv::imread("image.jpg");if (src.empty()) return -1;cv::Mat dst;cv::resize(src, dst, cv::Size(640, 480)); // 直接指定尺寸cv::imshow("Resized", dst);cv::waitKey(0);return 0;
}
方法二:按比例缩放(推荐灵活使用)
cv::Mat src = cv::imread("image.jpg");
cv::Mat dst;double scale = 0.5; // 缩小为原来的一半
cv::resize(src, dst, cv::Size(), scale, scale, cv::INTER_AREA);
cv::Size()
表示自动计算输出大小。- 这种方式适合动态缩放、响应式显示等场景。
保持宽高比:
如果你只想指定一个维度(比如宽度),另一个维度按比例计算:
int newWidth = 300;
double aspectRatio = static_cast<double>(src.cols) / src.rows;
int newHeight = static_cast<int>(newWidth / aspectRatio);cv::resize(src, dst, cv::Size(newWidth, newHeight));
相关文章:
OpenCV C++ 学习笔记(五):颜色空间转换、数值类型转换、图像混合、图像缩放
文章目录 颜色空间转换cvtColor通道分离split通道合并merge数值类型转换convertTo图片混合addWeighted图片缩放resize 颜色空间转换cvtColor cvtColor 是 OpenCV 中用于将图像从一种色彩空间转换为另一种色彩空间的函数。它非常适用于各种图像处理任务,如灰度化、颜…...

如何做接口测试?
🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 01、通用的项目架构 02、什么是接口 接口:服务端程序对外提供的一种统一的访问方式,通常采用HTTP协议,通过不同的urlÿ…...

【JMeter】性能测试知识和工具
目录 何为系统性能 何为性能测试 性能测试分类 性能测试指标 性能测试流程 性能测试工具:JMeter(主测web应用) jmeter文件目录 启动方式 基本元件:元件内有很多组件 jmeter参数化 jmeter关联 自动录制脚本 直连数据库…...

SOC-ESP32S3部分:25-HTTP请求
飞书文档https://x509p6c8to.feishu.cn/wiki/KL4RwxUQdipzCSkpB2lcBd03nvK HTTP(Hyper Text Transfer Protocol) 超文本传输协议,是一种建立在 TCP 上的无状态连接,整个基本的工作流程是客户端发送一个 HTTP 请求,说明…...

字符编码全解析:ASCII、GBK、Unicode、UTF-8与ANSI
UTF - 8(全球字符能被唯一标识)、GBK、Unicode、ANSI 区别与关联 qwen模型分词器文件 1. ASCII(基础铺垫,理解编码起源) 作用:最早期为处理英文文本设计,是字符编码的基础,后演变成其他编码兼容的一部分 。范围:共 128 个字符(0 - 127),包含英文大小写字母、数字…...
《前端面试题:HTML5、CSS3、ES6新特性》
现代前端开发中,HTML5、CSS3和JavaScript ES6共同构成了三大核心技术支柱。这些技术不仅显著提升了用户体验和性能表现,更大幅提高了开发效率。本文将从技术演进、核心特性到最佳实践,系统性地介绍这三大技术的应用之道。 我们将首先探讨HTM…...

MaxCompute开发UDF和UDTF案例
文章目录 一、Java开发UDF1、创建Maven项目2、创建UDF类3、打包上传资源4、创建函数MyUDF5、SQL验证 二、Java开发UDTF1、创建Maven项目2、创建UDTF类3、打包上传更新资源4、创建函数MyUDTF5、SQL验证 三、常见问题1、发布函数报错 一、Java开发UDF 1、创建Maven项目 创建Mav…...

49套夏日小清新计划总结日系卡通ppt模板
绿色小清新PPT模版,日系小清新PPT模版,粉红色PPT模版,蓝色PPT模版,草青色PPT模版,日系卡通PPT模版 49套夏日小清新计划总结日系卡通ppt模板:夏日小清新日系卡通PPT模版https://pan.quark.cn/s/9e4270d390fa…...

告别硬编码!用工厂模式优雅构建可扩展的 Spring Boot 应用 [特殊字符]
嗨,各位技术伙伴们!👋 在日常的软件开发中,我们经常面临需求变更的挑战。如何构建一个既能满足当前需求,又能轻松应对未来变化的系统呢?答案往往藏在那些经典的设计模式中。 今天,我们就来聊聊…...

Express教程【006】:使用Express写接口
文章目录 8、使用Express写接口8.1 创建API路由模块8.2 编写GET接口8.3 编写POST接口 8、使用Express写接口 8.1 创建API路由模块 1️⃣新建routes/apiRouter.js路由模块: /*** 路由模块*/ // 1-导入express const express require(express); // 2-创建路由对象…...

mongodb集群之分片集群
目录 1. 适用场景2. 集群搭建如何搭建搭建实例Linux搭建实例(待定)Windows搭建实例1.资源规划2. 配置conf文件3. 按顺序启动不同角色的mongodb实例4. 初始化config、shard集群信息5. 通过router进行分片配置 1. 适用场景 数据量大影响性能 数据量大概达到千万级或亿级的时候&…...

Starrocks Full GC日志分析
GC日志样例: [2025-06-03T07:36:06.1770800] GC(227) Pause Full (G1 Evacuation Pause) [2025-06-03T07:36:06.1960800] GC(227) Phase 1: Mark live objects [2025-06-03T07:36:06.9480800] GC(227) Cleaned string and symbol table, strings: 47009 processed,…...

飞算 JavaAI 赋能老项目重构:破旧立新的高效利器
许多企业的 Java 老项目面临着代码陈旧、架构落后、维护困难等问题。老项目重构势在必行,却又因庞大的代码量、复杂的业务逻辑让开发团队望而却步。 老项目重构困境重重 传统的 Java 老项目往往在长期的迭代和维护中积累了诸多问题。一方面,代码质量堪…...
RockyLinux9安装Docker
如何在RockyLinux9下安装Docker RockyLinux采用了全新的dnf来进行包管理,dnf支持yum别名,还没习惯的可以将dnf替换为yum 确保dnf最新 sudo dnf update -y安装dnf-plugins-core包 sudo dnf install -y dnf-plugins-core yum-utils添加Docker的官方仓库…...
RequestRateLimiterGatewayFilterFactory
一、功能说明 RequestRateLimiterGatewayFilterFactory 是 Spring Cloud Gateway 的流量控制组件,用于实现 API 请求速率限制,核心功能包括: 限制单位时间内的请求数量(如每秒10次)防止服务被突发流量击垮࿰…...
解决 xmlsec.InternalError: (-1, ‘lxml xmlsec libxml2 library version mismatch‘)
解决 xmlsec.InternalError: (-1, ‘lxml & xmlsec libxml2 library version mismatch’) 错误信息如下: Traceback (most recent call last):File "/home/mobsf/Mobile-Security-Framework-MobSF/manage.py", line 18, in <module>execute_f…...
【Linux基础知识系列】第九篇-Shell脚本入门
在Linux世界中,Shell脚本是自动化任务和简化操作的重要工具。它可以帮助用户编写一系列命令,自动执行重复的任务,从而提高工作效率。在本篇文章中,我们将介绍Shell脚本的基本概念、编写方法、常用命令和结构。通过这些内容&#x…...

typescript的Interface和Type
类型别名和接口非常相似,在大多数情况下你可以在它们之间自由选择。 几乎所有的 interface 功能都可以在 type 中使用,关键区别在于不能重新开放类型以添加新的属性,而接口始终是可扩展的。 // window.ts.transpileModule(src, {}); 这是调…...

java后端生成心电图-jfreechart
用jfreechart生成心电图 先上成功的图片 上代码 1.导入包 implementation org.jfree:jfreechart:1.5.4implementation org.jfree:jcommon:1.0.242.实现代码 对数据进行滤波 转换单位 package com.shinrun.infrastructure.util;import java.util.ArrayList; import java.ut…...

算法/机理模型演示平台搭建(二)——算法接口部署(FastApi)
算法/机理模型演示平台搭建(二)—— 算法接口部署(FastApi) 1. 项目结构2. 构建 Docker 镜像3. 运行 Docker 容器4. 访问 API 文档5. 调用 API1. 项目结构 app app/algorithms app/models Dockerfile FROM python:3.9-slimWORKDIR /codeCOPY ./requirements.txt /code…...

动态规划-647.回文子串-力扣(LeetCode)
一、题目解析 这里的子字符串是连续的,与之前的子序列不同,这里需要我们统计回文子串的数目。 二、算法原理 这里也有其他算法可以解决该问题,如中心扩展算法 时间复杂度O(N^2)/空间复杂度O(1),马拉车算法(具有局限性) 时间复杂…...
es 的字段类型(text和keyword)
Text 当一个字段是要被全文检索时,比如 Email 内容、产品描述,这些字段应该使用 text 类型。设置 text 类型以后,字段内容会被分析,在生成倒排索引之前,字符串会被分析器分词。text类型的字段不用于排序,很…...
Kotlin 中companion object {} 什么时候触发
在 Kotlin 中,companion object 的初始化触发时机是一个重要但容易被忽视的细节。以下是详细的解释: 1. 基本触发时机 companion object 的初始化发生在: 首次访问该类时(无论是访问伴生对象成员、创建类实例,还是通过…...

仿真每日一练 | Workbench中接触种类及选择方法简介
Workbench中给我们提供的接触类型主要包括以下几种👇 ◆ 1、摩擦 ◆ 2、无摩擦 ◆ 3、绑定 ◆ 4、不分离 ◆ 5、粗糙 ◆ 6、强制滑移 下面通过最常用的摩擦和绑定给大家展示两者的区别,同时文末也给大家介绍了几种接触的选择方法。首先先给大家介绍一下…...

Go语言中的rune和byte类型详解
1. rune类型 1.1. 基本概念 1. rune是Go语言的内建类型,它是int32的别名,即32位有符号整数; 2. 用于表示一个Unicode码点,全拼Unicode code point; 3. 可以表示任何UTF-8编码的字符; 1.2. 特点 1. 每…...
superior哥AI系列第6期:Transformer注意力机制:AI界的“注意力革命“
🎭 superior哥AI系列第6期:Transformer注意力机制:AI界的"注意力革命" 嘿!小伙伴们!👋 今天superior哥要带你们探索AI界最火的技术——Transformer!这个家伙可了不得,它不…...

【java面试】redis篇
redis篇 一、适用场景(一)缓存1、缓存穿透1.1 解决方案1:缓存空数据,查询返回的数据为空,将空结果缓存1.2 解决方案2:布隆过滤器 2、缓存击穿1.1 解决方案1:互斥锁1.2 解决方案2:逻辑…...

高效易用的 MAC 版 SVN 客户端:macSvn 使用体验
高效易用的 MAC 版 SVN 客户端:macSvn 使用体验 下载安装使用总结 最近有个项目要使用svn, 但是mac缺乏一款像 Windows 平台 TortoiseSVN 那样全面、高效且便捷的 SVN 客户端工具, 直到博主找到了该工具本文将结合实际使用体验,详细介绍 macSvn工具的核心…...
【搭建 Transformer】
搭建 Transformer 的基本步骤 Transformer 是一种基于自注意力机制的深度学习模型,广泛应用于自然语言处理任务。以下为搭建 Transformer 的关键步骤和代码示例。 自注意力机制 自注意力机制是 Transformer 的核心,计算输入序列中每个元素与其他元素的…...
自然图像数据集
目录 CIFAR-10 数据集CIFAR-100 数据集AFHQ 数据集FFHQ 数据集 CIFAR-10 数据集 简介: CIFAR-10 是一个经典的图像分类数据集,广泛用于机器学习领域的计算机视觉算法基准测试。它包含60000幅32x32的彩色图像,分为10个类,每类6000…...