Python训练day40
知识点回顾:
彩色和灰度图片测试和训练的规范写法:封装在函数中
展平操作:除第一个维度batchsize外全部展平
dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout
作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。
道图片的规范写法
# 先继续之前的代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
import warnings
# 忽略警告信息
warnings.filterwarnings("ignore")
# 设置随机种子,确保结果可复现
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(), # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,)) # MNIST数据集的均值和标准差
])# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64 # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten() # 将28x28的图像展平为784维向量self.layer1 = nn.Linear(784, 128) # 第一层:784个输入,128个神经元self.relu = nn.ReLU() # 激活函数self.layer2 = nn.Linear(128, 10) # 第二层:128个输入,10个输出(对应10个数字类别)def forward(self, x):x = self.flatten(x) # 展平图像x = self.layer1(x) # 第一层线性变换x = self.relu(x) # 应用ReLU激活函数x = self.layer2(x) # 第二层线性变换,输出logitsreturn x# 初始化模型
model = MLP()
model = model.to(device) # 将模型移至GPU(如果可用)# from torchsummary import summary # 导入torchsummary库
# print("\n模型结构信息:")
# summary(model, input_size=(1, 28, 28)) # 输入尺寸为MNIST图像尺寸criterion = nn.CrossEntropyLoss() # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam优化器5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train() # 设置为训练模式# 新增:记录每个 iteration 的损失all_iter_losses = [] # 存储所有 batch 的损失iter_indices = [] # 存储 iteration 序号(从1开始)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):# enumerate() 是 Python 内置函数,用于遍历可迭代对象(如列表、元组)并同时获取索引和值。# batch_idx:当前批次的索引(从 0 开始)# (data, target):当前批次的样本数据和对应的标签,是一个元组,这是因为dataloader内置的getitem方法返回的是一个元组,包含数据和标签。# 只需要记住这种固定写法即可data, target = data.to(device), target.to(device) # 移至GPU(如果可用)optimizer.zero_grad() # 梯度清零output = model(data) # 前向传播loss = criterion(output, target) # 计算损失loss.backward() # 反向传播optimizer.step() # 更新参数# 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1) # iteration 序号从1开始# 统计准确率和损失running_loss += loss.item() #将loss转化为标量值并且累加到running_loss中,计算总损失_, predicted = output.max(1) # output:是模型的输出(logits),形状为 [batch_size, 10](MNIST 有 10 个类别)# 获取预测结果,max(1) 返回每行(即每个样本)的最大值和对应的索引,这里我们只需要索引total += target.size(0) # target.size(0) 返回当前批次的样本数量,即 batch_size,累加所有批次的样本数,最终等于训练集的总样本数correct += predicted.eq(target).sum().item() # 返回一个布尔张量,表示预测是否正确,sum() 计算正确预测的数量,item() 将结果转换为 Python 数字# 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 测试、打印 epoch 结果epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 保留原 epoch 级曲线(可选)# plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)return epoch_test_acc # 返回最终测试准确率
彩色图片的规范写法
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(), # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 标准化处理
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten() # 将3x32x32的图像展平为3072维向量self.layer1 = nn.Linear(3072, 512) # 第一层:3072个输入,512个神经元self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(0.2) # 添加Dropout防止过拟合self.layer2 = nn.Linear(512, 256) # 第二层:512个输入,256个神经元self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(0.2)self.layer3 = nn.Linear(256, 10) # 输出层:10个类别def forward(self, x):# 第一步:将输入图像展平为一维向量x = self.flatten(x) # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]# 第一层全连接 + 激活 + Dropoutx = self.layer1(x) # 线性变换: [batch_size, 3072] → [batch_size, 512]x = self.relu1(x) # 应用ReLU激活函数x = self.dropout1(x) # 训练时随机丢弃部分神经元输出# 第二层全连接 + 激活 + Dropoutx = self.layer2(x) # 线性变换: [batch_size, 512] → [batch_size, 256]x = self.relu2(x) # 应用ReLU激活函数x = self.dropout2(x) # 训练时随机丢弃部分神经元输出# 第三层(输出层)全连接x = self.layer3(x) # 线性变换: [batch_size, 256] → [batch_size, 10]return x # 返回未经过Softmax的logits# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device) # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train() # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = [] # 存储所有 batch 的损失iter_indices = [] # 存储 iteration 序号for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device) # 移至GPUoptimizer.zero_grad() # 梯度清零output = model(data) # 前向传播loss = criterion(output, target) # 计算损失loss.backward() # 反向传播optimizer.step() # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / total# 测试阶段model.eval() # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testprint(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_acc # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 执行训练和测试
epochs = 20 # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# # print("模型已保存为: cifar10_mlp_model.pth")
@浙大疏锦行
相关文章:
Python训练day40
知识点回顾: 彩色和灰度图片测试和训练的规范写法:封装在函数中 展平操作:除第一个维度batchsize外全部展平 dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout 作业:仔细学习下测试和训练…...
湖北理元理律师事务所:债务优化中的民生保障实践
在债务纠纷数量年增21%(2023年最高人民法院数据)的背景下,法律服务机构如何平衡债务清偿与民生保障,成为行业重要课题。湖北理元理律师事务所通过“法律金融心理”三维服务模式,探索出一条可持续的债务化解路径。 一、…...
Vue-Todo-list 案例
一、前言 在前端开发中,Todo List(待办事项列表) 是一个非常经典的入门项目。它涵盖了组件化思想、数据绑定、事件处理、本地存储等核心知识点,非常适合用来练习 Vue 的基本用法。 本文将带你一步步实现一个功能完整的 Vue Todo…...

GIC700概述
GIC-700是用于处理外设与处理器核之间,以及核与核之间中断的通用中断控制器。GIC-700支持分布式微体系结构,其中包含用于提供灵活GIC实现的几个独立块。 GIC700支持GICv3、GICv3.1、GICv4.1架构。 该微体系结构规模可从单核到互联多chip环境࿰…...
动静态库的使用(Linux)
1.库 通俗来说,库就是现有的,可复用的代码,例如:在C/C语言编译时,就需要依赖相关的C/C标准库。本质上来说库是一种可执行代码的二进制形式,可以被操作系统载入内存执行。通常我们可以在windows下看到一些后…...
Flutter、React Native 项目如何搞定 iOS 上架?从构建 IPA 到上传 App Store 的实战流程全解析
你可能会认为:用了跨平台框架(如 Flutter 或 React Native),开发效率提高了,发布流程也该更轻松才对。 但当我第一次要将一个 Flutter 项目发布到 App Store 时,现实给了我一巴掌: “没有 Mac&…...

统信桌面专业版如何使用python开发平台jupyter
哈喽呀,小伙伴们 最近有学员想了解在统信UOS桌面专业版系统上开发python程序,Anaconda作为python开发平台,anaconda提供图形开发平台,提供大量的开发插件和管理各种插件的平台,但是存在版权问题,有没有其他工具可以替代Anaconda呢…...
移除元素-JavaScript【算法学习day.04】
题目链接:27. 移除元素 - 力扣(LeetCode) 第一种思路 标签:拷贝覆盖 主要思路是遍历数组 nums,每次取出的数字变量为 num,同时设置一个下标 ans 在遍历过程中如果出现数字与需要移除的值不相同时ÿ…...
Android 相对布局管理器(RelativeLayout)
俩重要属性 android:gravity android:ignoreGravity Android 相对布局管理器:自由排列的魔法布局 想象一下,你是一个室内设计师,需要在一个房间里摆放家具。RelativeLayout(相对布局)就像是一个 "自由摆放"…...
DuckDB + Spring Boot + MyBatis 构建高性能本地数据分析引擎
DuckDB 是一款令人兴奋的内嵌式分析型数据库 (OLAP),它为本地数据分析和处理带来了前所未有的便捷与高效 🚀。它无需外部服务器,可以直接在应用程序进程中运行,并提供了强大的 SQL 支持和列式存储带来的高性能。 什么是 DuckDB&am…...

什么是预训练?深入解读大模型AI的“高考集训”
1. 预训练的通俗理解:AI的“高考集训” 我们可以将预训练(Pre-training) 形象地理解为大模型AI的“高考集训”。就像学霸在高考前需要刷五年高考三年模拟一样,大模型在正式诞生前,也要经历一场声势浩大的“题海战术”…...

鸿蒙仓颉语言开发实战教程:购物车页面
大家上午好,仓颉语言商城应用的开发进程已经过半,不知道大家通过这一系列的教程对仓颉开发是否有了进一步的了解。今天要分享的购物车页面: 看到这个页面,我们首先要对它简单的分析一下。这个页面一共分为三部分,分别是…...

OPENCV的AT函数
一.AT函数介绍 在 OpenCV 中,at() 是一个模板成员函数,用于访问和修改矩阵或图像中特定位置的元素。它提供了一种直接且类型安全的方式来操作单个像素值,但需要注意其性能和类型匹配问题 AT函数是OPENCV中重要的函数…...
【走好求职第一步】求职OMG——见面课测验4
2025最新版!!!6.8截至答题,大家注意呀!博主码字不易点个关注吧~~ 1.单选题(2分) 下列不属于简历撰写技巧原则的是( A ) A.具体性 B.相关性 C.匹配性 2.单选题(2分) 笔试的下一步一般是:( B &…...

ISO 17387——解读自动驾驶相关标准法规(LCDAS)
Intelligent transport systems — Lane change decision aid systems (LCDAS) — Performance requirements and test procedures(First edition: 2008-05-01) 原文链接:https://cdn.standards.iteh.ai/samples/43654/701fd49bde7b4d3db165444b7c6f0c53/ISO-17387…...

智慧零售管理中的客流统计与属性分析
智慧零售管理中的视觉分析技术应用 一、背景与需求 随着智慧零售的快速发展,传统零售门店面临管理效率低、安全风险高、客户体验差等问题。通过视觉分析技术,智慧零售管理系统可实现对门店内人员行为的实时监控与数据分析,从而提升运营效率…...

Ps:Adobe PDF 预设
Ps菜单:编辑/Adobe PDF 预设 Edit/Adobe PDF Presets 通过“Adobe PDF 预设” Adobe PDF Presets对话框,可以查看 Adobe PDF 预设,了解复杂的 PDF 设置。还可以编辑、新建、删除、载入预设,根据最终用途(如高质量打印、…...
Python Excel 文件处理:openpyxl 与 pandas 库完全指南
在数据处理和分析过程中,Excel 文件是最常见的数据存储格式之一。Python 提供了多个库来处理 Excel 文件,其中 openpyxl 和 pandas 是最常用的两个库。它们各自有独特的优势,适用于不同的需求。本文将详细介绍如何使用这两个库来处理 Excel 文…...
九、【ESP32开发全栈指南: UDP通信服务端】
一、TCP与UDP核心差异 特性TCPUDP连接方式面向连接 (需三次握手)无连接可靠性可靠传输 (重传/排序/校验)尽力交付 (不保证可靠性)实时性延迟较高低延迟,实时性强传输效率协议开销大头部开销小 (仅8字节)连接类型点对点支持广播/多播资源占用高 (需维护连接状态)极低…...

靶场(二十)---靶场体会小白心得 ---jacko
老样子开局先看端口,先看http端口 PORT STATE SERVICE VERSION 80/tcp open http Microsoft IIS httpd 10.0 |_http-title: H2 Database Engine (redirect) | http-methods: |_ Potentially risky methods: TRACE |_http-server-header:…...
【EasyExcel】导出时添加页眉页脚
一、需求 使用 EasyExcel 导出时添加页眉页脚 二、添加页眉页脚的方法 通过配置WriteSheet或WriteTable对象来添加页眉和页脚。以下是具体实现步骤: 1. 创建自定义页眉页脚实现类 public class CustomFooterHandler implements SheetWriteHandler {private final…...

高频通信与航天电子的材料革命:猎板PCB高端压合基材技术解析
—聚酰亚胺/陶瓷基板在5G与航天场景的产业化应用 一、极端环境材料体系:突破温域与频率极限 聚酰亚胺基板(PI)的航天级稳定性 猎板在卫星通信PCB中采用真空层压工艺处理聚酰亚胺基材(Dk≈10.2)&a…...
如何区分 “通信网络安全防护” 与 “信息安全” 的考核重点?
“通信网络安全防护” 与 “信息安全” 的考核重点可以从以下几个方面进行区分: 保护对象 通信网络安全防护:重点关注通信网络系统本身,包括网络基础设施,如路由器、交换机、基站等,以及网络通信链路和相关设备。同…...
Java 中 ArrayList、Vector、LinkedList 的核心区别与应用场景
Java 中 ArrayList、Vector、LinkedList 的核心区别与应用场景 引言 在 Java 集合框架体系中,ArrayList、Vector和LinkedList作为List接口的三大经典实现类,共同承载着列表数据的存储与操作功能。然而,由于底层数据结构设计、线程安全机制以…...

WPF技术体系与现代化样式
目录 1 WPF技术架构解析 1.1 技术演进与定位 1.2 核心机制对比 2 样式与资源系统 2.1 资源(Resource)定义与作用域 2.2 样式(Style)与触发器 3 开发环境配置(.NET 8) 3.1 安装流程 3.2 项目结…...
Redis 与 MySQL 数据一致性保障方案
在高并发场景下,Redis 作为缓存中间件与 MySQL 数据库配合使用时,数据一致性是一个关键挑战。本文将详细探讨如何保障 Redis 与 MySQL 的数据一致性,并结合 Java 代码实现具体方案。 数据不一致的原因分析 在分布式系统中,Redis…...
Sentry 接口返回 Status Code 429 Too Many Requests
Sentry 是一个 开源的错误追踪(Error Tracking)平台,主要用于实时捕获和监控应用程序中的异常、错误日志,并帮助开发者快速定位问题根源。 📌 Sentry 的核心功能 自动捕获异常 自动捕捉 JavaScript、Vue、React、Node.…...
数学建模期末速成 聚类分析与判别分析
聚类分析是在不知道有多少类别的前提下,建立某种规则对样本或变量进行分类。判别分析是已知类别,在已知训练样本的前提下,利用训练样本得到判别函数,然后对未知类别的测试样本判别其类别。 聚类分析 根据样本自身的属性…...

【工具教程】PDF电子发票提取明细导出Excel表格,OFD电子发票行程单提取保存表格,具体操作流程
在企业财务管理领域,电子发票提取明细导出表格是不可或缺的工具。 月末财务结算时,财务人员需处理成百上千张电子发票,将发票明细导出为表格后,通过表格强大的数据处理功能,可自动分类汇总不同项目的支出金额ÿ…...

基于STM32的DHT11温湿度远程监测LCD1602显示Proteus仿真+程序+设计报告+讲解视频
DHT11温湿度远程监测proteus仿真 1. 主要功能2.仿真3. 程序4. 设计报告5. 资料清单&下载链接 基于STM32的DHT11温湿度远程监测LCD1602显示Proteus仿真设计(仿真程序设计报告讲解视频) 仿真图proteus 8.9 程序编译器:keil 5 编程语言:C…...