day 18进行聚类,进而推断出每个簇的实际含义
@浙大疏锦行
对聚类的结果根据具体的特征进行解释,进而推断出每个簇的实际含义
两种思路:
-
你最开始聚类的时候,就选择了你想最后用来确定簇含义的特征,
-
最开始用全部特征来聚类,把其余特征作为 x,聚类得到的簇类别作为标签构建监督模型,进而根据重要性筛选特征,来确定要根据哪些特征赋予含义。
下面使用第二种方法,先计算再分析
先分析出和聚类有关的几个重要特征
再根据不同的簇对应的特征与簇的大小进行分析,从而最后将结果进行总结
进行聚类
# 先运行之前预处理好的代码
import pandas as pd
import pandas as pd #用于数据处理和分析,可处理表格数据。
import numpy as np #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt #用于绘制各种类型的图表
import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import warnings
warnings.filterwarnings("ignore")# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
data = pd.read_csv('data.csv') #读取数据# 先筛选字符串变量
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {'Own Home': 1,'Rent': 2,'Have Mortgage': 3,'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)# Years in current job 标签编码
years_in_job_mapping = {'< 1 year': 1,'1 year': 2,'2 years': 3,'3 years': 4,'4 years': 5,'5 years': 6,'6 years': 7,'7 years': 8,'8 years': 9,'9 years': 10,'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:if i not in data2.columns:list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名# Term 0 - 1 映射
term_mapping = {'Short Term': 0,'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表# 连续特征用中位数补全
for feature in continuous_features: mode_value = data[feature].mode()[0] #获取该列的众数。data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# # 按照8:2划分训练集和测试集
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns# 标准化数据(聚类前通常需要标准化)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# X_scaled
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
import matplotlib.pyplot as plt
import seaborn as sns# 评估不同 k 值下的指标
k_range = range(2, 11) # 测试 k 从 2 到 10
inertia_values = []
silhouette_scores = []
ch_scores = []
db_scores = []for k in k_range:kmeans = KMeans(n_clusters=k, random_state=42)kmeans_labels = kmeans.fit_predict(X_scaled)inertia_values.append(kmeans.inertia_) # 惯性(肘部法则)silhouette = silhouette_score(X_scaled, kmeans_labels) # 轮廓系数silhouette_scores.append(silhouette)ch = calinski_harabasz_score(X_scaled, kmeans_labels) # CH 指数ch_scores.append(ch)db = davies_bouldin_score(X_scaled, kmeans_labels) # DB 指数db_scores.append(db)print(f"k={k}, 惯性: {kmeans.inertia_:.2f}, 轮廓系数: {silhouette:.3f}, CH 指数: {ch:.2f}, DB 指数: {db:.3f}")# # 绘制评估指标图
# plt.figure(figsize=(15, 10))# # 肘部法则图(Inertia)
# plt.subplot(2, 2, 1)
# plt.plot(k_range, inertia_values, marker='o')
# plt.title('肘部法则确定最优聚类数 k(惯性,越小越好)')
# plt.xlabel('聚类数 (k)')
# plt.ylabel('惯性')
# plt.grid(True)# # 轮廓系数图
# plt.subplot(2, 2, 2)
# plt.plot(k_range, silhouette_scores, marker='o', color='orange')
# plt.title('轮廓系数确定最优聚类数 k(越大越好)')
# plt.xlabel('聚类数 (k)')
# plt.ylabel('轮廓系数')
# plt.grid(True)# # CH 指数图
# plt.subplot(2, 2, 3)
# plt.plot(k_range, ch_scores, marker='o', color='green')
# plt.title('Calinski-Harabasz 指数确定最优聚类数 k(越大越好)')
# plt.xlabel('聚类数 (k)')
# plt.ylabel('CH 指数')
# plt.grid(True)# # DB 指数图
# plt.subplot(2, 2, 4)
# plt.plot(k_range, db_scores, marker='o', color='red')
# plt.title('Davies-Bouldin 指数确定最优聚类数 k(越小越好)')
# plt.xlabel('聚类数 (k)')
# plt.ylabel('DB 指数')
# plt.grid(True)# plt.tight_layout()
# plt.show()# 提示用户选择 k 值
selected_k = 3 # 这里选择3后面好分析,也可以根据图选择最佳的k值# 使用选择的 k 值进行 KMeans 聚类
kmeans = KMeans(n_clusters=selected_k, random_state=42)
kmeans_labels = kmeans.fit_predict(X_scaled)
X['KMeans_Cluster'] = kmeans_labels# 使用 PCA 降维到 2D 进行可视化
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)# KMeans 聚类结果可视化
plt.figure(figsize=(6, 5))
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=kmeans_labels, palette='viridis')
plt.title(f'KMeans Clustering with k={selected_k} (PCA Visualization)')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()# 打印 KMeans 聚类标签的前几行
print(f"KMeans Cluster labels (k={selected_k}) added to X:")
print(X[['KMeans_Cluster']].value_counts())
shap分析特征
x1= X.drop('KMeans_Cluster',axis=1) # 删除聚类标签列
y1 = X['KMeans_Cluster']
# 构建随机森林,用shap重要性来筛选重要性
import shap
import numpy as np
from sklearn.ensemble import RandomForestClassifier # 随机森林分类器
model = RandomForestClassifier(n_estimators=100, random_state=42) # 随机森林模型
model.fit(x1, y1) # 训练模型,此时无需在意准确率 直接全部数据用来训练了
shap.initjs()
# 初始化 SHAP 解释器
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(x1) # 这个计算耗时
shap_values.shape # 第一维是样本数,第二维是特征数,第三维是类别数
# --- 1. SHAP 特征重要性条形图 (Summary Plot - Bar) ---
print("--- 1. SHAP 特征重要性条形图 ---")
shap.summary_plot(shap_values[:, :, 0], x1, plot_type="bar",show=False) # 这里的show=False表示不直接显示图形,这样可以继续用plt来修改元素,不然就直接输出了
plt.title("SHAP Feature Importance (Bar Plot)")
plt.show()
绘制总样本中的前四个重要性的特征分布图
# X["Purpose_debt consolidation"].value_counts() # 统计每个唯一值的出现次数
import matplotlib.pyplot as plt# 总样本中的前四个重要性的特征分布图
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()for i, feature in enumerate(selected_features):axes[i].hist(X[feature], bins=20)axes[i].set_title(f'Histogram of {feature}')axes[i].set_xlabel(feature)axes[i].set_ylabel('Frequency')plt.tight_layout()
plt.show()
绘制出每个簇对应的这四个特征的分布图
根据绘制的图进行解释
相关文章:

day 18进行聚类,进而推断出每个簇的实际含义
浙大疏锦行 对聚类的结果根据具体的特征进行解释,进而推断出每个簇的实际含义 两种思路: 你最开始聚类的时候,就选择了你想最后用来确定簇含义的特征, 最开始用全部特征来聚类,把其余特征作为 x,聚类得到…...
pandas 字符串存储技术演进:从 object 到 PyArrow 的十年历程
文章目录 1. 引言2. 阶段1:原始时代(pandas 1.0前)3. 阶段2:Python-backed StringDtype(pandas 1.0 - 1.3)4. 阶段3:PyArrow初次尝试(pandas 1.3 - 2.1)5. 阶段4…...

LLMs 系列科普文(6)
截止到目前,我们从模型预训练阶段的数据准备讲起,谈到了 Tokenizer、模型的结构、模型的训练,基础模型、预训练阶段、后训练阶段等,这里存在大量的术语或名词,也有一些奇奇怪怪或者说是看起来乱七八糟的内容。这期间跳…...
exp1_code
#include <iostream> using namespace std; // 链栈节点结构 struct StackNode { int data; StackNode* next; StackNode(int val) : data(val), next(nullptr) {} }; // 顺序栈实现 class SeqStack { private: int* data; int top; int capac…...

serv00 ssh登录保活脚本-邮件通知版
适用于自己有服务器情况,ssh定时登录到serv00,并在登录成功后发送邮件通知 msmtp 和 mutt安装 需要安装msmtp 和 mutt这两个邮件客户端并配置,参考如下文章前几步是讲配置这俩客户端的,很简单,不再赘述 用Shell脚本实…...

意识上传伦理前夜:我们是否在创造数字奴隶?
当韩国财阀将“数字永生”标价1亿美元准入权时,联合国预警的“神经种姓制度”正从科幻步入现实。某脑机接口公司用户协议中“上传意识衍生算法归公司所有”的隐藏条款,恰似德里达预言的当代印证:“当意识沦为可交易数据流,主体性便…...

【AIGC】RAGAS评估原理及实践
【AIGC】RAGAS评估原理及实践 (1)准备评估数据集(2)开始评估2.1 加载数据集2.2 评估忠实性2.3 评估答案相关性2.4 上下文精度2.5 上下文召回率2.6 计算上下文实体召回率 RAGas(RAG Assessment)RAG 评估的缩写ÿ…...

ESP12E/F 参数对比
模式GPIO0GPIO2GPIO15描述正常启动高高低从闪存运行固件闪光模式低高低启用固件刷写 PinNameFunction1RSTReset (Active Low)2ADC (A0)Analog Input (0–1V)3EN (CH_PD)Chip Enable (Pull High for Normal Operation)4GPIO16Wake from Deep Sleep, General Purpose I/O5GPIO14S…...

第二十八章 字符串与数字
第二十八章 字符串与数字 计算机程序完全就是和数据打交道。很多编程问题需要使用字符串和数字这种更小的数据来解决。 参数扩展 第七章,已经接触过参数扩展,但未进行详细说明,大多数参数扩展并不用于命令行,而是出现在脚本文件中。 如果没有什么特殊原因,把参数扩展放…...

[RDK X5] MJPG编解码开发实战:从官方API到OpenWanderary库的C++/Python实现
业余时间一直在基于RDK X5搞一些小研究,需要基于高分辨率图像检测目标。实际落地时,在图像采集上遇到了个大坑。首先,考虑到可行性,我挑选了一个性价比最高的百元内摄像头,已确定可以在X5上使用,接下来就开…...
java复习 05
我的天啊一天又要过去了,没事的还有时间!!! 不要焦虑不要焦虑,事实证明只要我认真地投入进去一切都还是来得及的,代码多实操多复盘,别叽叽喳喳胡思乱想多多思考,有迷茫前害怕后的功…...

aardio 简单网页自动化
WebView自动化,以前每次重复做网页登录、搜索这些操作时都觉得好麻烦,现在终于能让程序替我干活了,赶紧记录下这个超实用的技能! 一、初次接触WebView WebView自动化就像给程序装了个"网页浏览器",第一步得…...

打卡第39天:Dataset 和 Dataloader类
知识点回顾: 1.Dataset类的__getitem__和__len__方法(本质是python的特殊方法) 2.Dataloader类 3.minist手写数据集的了解 作业:了解下cifar数据集,尝试获取其中一张图片 import torch import torch.nn as nn import…...
【评测】Qwen3-Embedding模型初体验
每一篇文章前后都增加返回目录 回到目录 【评测】Qwen3-Embedding模型初体验 模型的介绍页面 本机配置:八代i5-8265U,16G内存,无GPU核显运行,win10操作系统 ollama可以通过下面命令拉取模型: ollama pull modelscope…...
BeanFactory 和 FactoryBean 有何区别与联系?
导语: Spring 是后端面试中的“常青树”,而 BeanFactory 与 FactoryBean 的关系更是高频卡人点。很多候选人混淆两者概念,答非所问,轻则失分,重则直接被“pass”。本文将从面试官视角,深入剖析这一经典问题…...

如何做好一份优秀的技术文档:专业指南与最佳实践
如何做好一份优秀的技术文档:专业指南与最佳实践 技术文档是产品开发、用户支持和团队协作的核心工具。高质量的技术文档能够提升开发效率、降低维护成本并改善用户体验。本文将从实践出发,详细讲解如何编写专业、清晰且实用的技术文档。 🌟…...
C语言内存管理和编译优化实战
参考: C语言内存管理“玄学”:从崩溃到精通的避坑指南C语言编译优化实战:从入门到进阶的高效代码优化技巧...

TCP相关问题 第一篇
TCP相关问题1 1.TCP主动断开连接方为什么需要等待2MSL 如上图所示:在被动链接方调用close,发送FIN时进入LAST_ACK状态,但未收到主动连接方的ack确认,需要被动连接方重新发送一个FIN,而为什么是2MSL,一般认为丢失ack在…...

6.Pandas 数据可视化图-1
第三章 数据可视化 文章目录 目录 第三章 数据可视化 文章目录 前言 一、数据可视化 二、使用步骤 1.pyplot 1.1引入库 1.2 设置汉字字体 1.3 数据准备 1.4 设置索引列 编辑 1.5 调用绘图函数 2.使用seaborn绘图 2.1 安装导入seaborn 2.2 设置背景风格 2.3 调用绘图方法 2.…...

软件功能测试报告都包含哪些内容?
软件功能测试报告是软件开发生命周期中的重要文档,主要涵盖以下关键内容: 1.测试概况:概述测试目标、范围和方法,确保读者对测试背景有清晰了解。 2.测试环境:详细描述测试所用的硬件、软件环境,确保…...

在Vue或React项目中使用Tailwind CSS实现暗黑模式切换:从系统适配到手动控制
在现代Web开发中,暗黑模式(Dark Mode)已成为提升用户体验的重要功能。本文将带你使用Tailwind CSS在React项目(Vue项目类似)中实现两种暗黑模式控制方式: 系统自动适配 - 根据用户设备偏好自动切换手动切换 - 通过按钮让用户自由选择 一、项目准备 使…...

Linux--命令行参数和环境变量
1.命令行参数 Linux 命令行参数基础 1.1参数格式 位置参数:无符号,按顺序传递(如 ls /home/user 中 /home/user 是位置参数) 选项参数: 短选项:以 - 开头,单个字母(如 -l 表示长格…...
Android 集成 Firebase 指南
Firebase 是 Google 提供的一套移动开发平台,包含分析、认证、数据库、消息推送等多种服务。以下是在 Android 应用中集成 Firebase 的详细步骤: 1. 准备工作 安装 Android Studio - 确保使用最新版本 创建或打开 Android 项目 - 项目需要配置正确的包…...

springboot线上教学平台
摘要:在社会快速发展的影响下,使线上教学平台的管理和运营比过去十年更加理性化。依照这一现实为基础,设计一个快捷而又方便的网上线上教学平台系统是一项十分重要并且有价值的事情。对于传统的线上教学平台控制模型来说,网上线上…...
阿里云 Linux 搭建邮件系统全流程及常见问题解决
阿里云 Linux 搭建 [conkl.com]邮件系统全流程及常见问题解决 目录 阿里云 Linux 搭建 [conkl.com]邮件系统全流程及常见问题解决一、前期准备(关键配置需重点检查)1.1 服务器与域名准备1.2 系统初始化(必做操作) 二、核心组件安装…...
【Elasticsearch】映射:fielddata 详解
映射:fielddata 详解 1.fielddata 是什么2.fielddata 的工作原理3.主要用法3.1 启用 fielddata(通常在 text 字段上)3.2 监控 fielddata 使用情况3.3 清除 fielddata 缓存 4.使用场景示例示例 1:对 text 字段进行聚合示例 2&#…...
用Python训练自动驾驶神经网络:从零开始驾驭未来之路
用Python训练自动驾驶神经网络:从零开始驾驭未来之路 哈喽,朋友们!我是Echo_Wish,今天咱们聊点超酷的话题——自动驾驶中的神经网络训练,用Python怎么玩转起来? 说实话,自动驾驶一直是科技圈的香饽饽,为什么?因为它承载了未来交通的无限可能:减少事故、提升效率、节…...
【电路】阻抗匹配
📝 阻抗匹配 一、什么是阻抗匹配? 阻抗匹配(Impedance Matching)是指在电子系统中,为了实现最大功率传输或最小信号反射,使信号源、传输线与负载之间的阻抗达到一种“匹配”状态的技术。 研究对象&#x…...

mariadb5.5.56在centos7.6环境安装
mariadb5.5.56在centos7.6环境安装 1 下载安装包 https://mariadb.org/mariadb/all-releases/#5-5 2 上传安装包的服务器 mariadb-5.5.56-linux-systemd-x86_64.tar.gz 3 解压安装包 tar -zxvf mariadb-5.5.56-linux-systemd-x86_64.tar.gz mv mariadb-5.5.56-linux-syst…...
MySQL 索引失效:六大场景与原理剖析
我们都熟知索引是优化 MySQL 查询性能的利器。但你是否遇到过这样的困境:明明在表上建立了索引,查询却依然缓慢,EXPLAIN 分析后发现索引并未被使用?这就是所谓的“索引失效”。 索引失效并非一个 Bug,而是 MySQL 查询…...