数据结构基础之排序算法
在数据结构中,常见的排序算法有以下几种:
- 冒泡排序(Bubble Sort):通过比较相邻元素并交换它们的位置,每轮将最大(或最小)的元素冒泡到末尾,重复执行直到排序完成。
function bubbleSort(arr) {const n = arr.length;for (let i = 0; i < n - 1; i++) {for (let j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {[arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];}}}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(bubbleSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]
特点:简单易懂,但对于大型数据集效率较低。
时间复杂度:
最优情况:O(n)(当数组已经排序好时)。
平均情况:O(n^2)。
最坏情况:O(n^2)。
- 插入排序(Insertion Sort):将数组分为已排序和未排序两部分,每次从未排序部分选择一个元素插入到已排序部分的正确位置,重复执行直到排序完成。
function insertionSort(arr) {const n = arr.length;for (let i = 1; i < n; i++) {let key = arr[i];let j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j--;}arr[j + 1] = key;}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(insertionSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]
特点:适用于小型数据集和部分有序数组。
时间复杂度:
最优情况:O(n)(当数组已经排序好时)。
平均情况:O(n^2)。
最坏情况:O(n^2)。
- 选择排序(Selection Sort):每轮从未排序部分选择最小(或最大)的元素,将其与未排序部分的首元素交换,重复执行直到排序完成。
function selectionSort(arr) {const n = arr.length;for (let i = 0; i < n - 1; i++) {let minIdx = i;for (let j = i + 1; j < n; j++) {if (arr[j] < arr[minIdx]) {minIdx = j;}}[arr[i], arr[minIdx]] = [arr[minIdx], arr[i]];}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(selectionSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]
特点:简单易懂,但对于大型数据集效率较低。
时间复杂度:
最优情况:O(n^2)。
平均情况:O(n^2)。
最坏情况:O(n^2)。
- 快速排序(Quick Sort):通过选取一个基准元素,将数组分成比基准元素小和大的两部分,然后递归地对两部分进行排序。
function quickSort(arr) {if (arr.length <= 1) return arr;const pivot = arr[0];const left = [];const right = [];for (let i = 1; i < arr.length; i++) {if (arr[i] < pivot) {left.push(arr[i]);} else {right.push(arr[i]);}}return [...quickSort(left), pivot, ...quickSort(right)];
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(quickSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]
特点:高效且被广泛使用的排序算法。
时间复杂度:
最优情况:O(n log n)。
平均情况:O(n log n)。
最坏情况:O(n^2)。
- 归并排序(Merge Sort):将数组不断分割成较小的子数组,然后再将子数组按顺序合并,重复执行直到排序完成。
function mergeSort(arr) {if (arr.length <= 1) return arr;const mid = Math.floor(arr.length / 2);const left = mergeSort(arr.slice(0, mid));const right = mergeSort(arr.slice(mid));return merge(left, right);
}function merge(left, right) {const mergedArr = [];let leftIdx = 0;let rightIdx = 0;while (leftIdx < left.length && rightIdx < right.length) {if (left[leftIdx] < right[rightIdx]) {mergedArr.push(left[leftIdx]);leftIdx++;} else {mergedArr.push(right[rightIdx]);rightIdx++;}}return [...mergedArr, ...left.slice(leftIdx), ...right.slice(rightIdx)];
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(mergeSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]
特点:稳定的排序算法,适用于大型数据集。
时间复杂度:
最优情况:O(n log n)。
平均情况:O(n log n)。
最坏情况:O(n log n)。
- 堆排序(Heap Sort):利用二叉堆(最大堆或最小堆)的特性进行排序,将堆顶元素与最后一个元素交换,然后重建堆,重复执行直到排序完成。
function heapSort(arr) {const n = arr.length;for (let i = Math.floor(n / 2) - 1; i >= 0; i--) {heapify(arr, n, i);}for (let i = n - 1; i >= 0; i--) {[arr[0], arr[i]] = [arr[i], arr[0]];heapify(arr, i, 0);}return arr;
}function heapify(arr, n, i) {let largest = i;const left = 2 * i + 1;const right = 2 * i + 2;if (left < n && arr[left] > arr[largest]) {largest = left;}if (right < n && arr[right] > arr[largest]) {largest = right;}if (largest !== i) {[arr[i], arr[largest]] = [arr[largest], arr[i]];heapify(arr, n, largest);}
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(heapSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]
特点:高效的原地排序算法。
时间复杂度:
最优情况:O(n log n)。
平均情况:O(n log n)。
最坏情况:O(n log n)。
- 希尔排序(Shell Sort):是插入排序的一种改进算法,通过分组进行插入排序,逐渐缩小分组间隔,直到分组间隔为1。
function shellSort(arr) {const n = arr.length;for (let gap = Math.floor(n / 2); gap > 0; gap = Math.floor(gap / 2)) {for (let i = gap; i < n; i++) {let temp = arr[i];let j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(shellSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]
特点:插入排序的改进版本,适用于中等大小的数据集。
时间复杂度:
最优情况:O(n log^2 n)(取决于步长序列)。
平均情况:取决于步长序列。
最坏情况:取决于步长序列。
- 计数排序(Counting Sort):适用于一定范围内的整数排序,通过统计每个元素出现的次数,然后计算每个元素的位置,重复执行直到排序完成。
function countingSort(arr) {const n = arr.length;let max = Math.max(...arr);let min = Math.min(...arr);const range = max - min + 1;const count = Array(range).fill(0);const output = Array(n);for (let i = 0; i < n; i++) {count[arr[i] - min]++;}for (let i = 1; i < range; i++) {count[i] += count[i - 1];}for (let i = n - 1; i >= 0; i--) {output[count[arr[i] - min] - 1] = arr[i];count[arr[i] - min]--;}for (let i = 0; i < n; i++) {arr[i] = output[i];}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(countingSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]
特点:适用于小范围整数排序。
时间复杂度:O(n + k),其中 n 是输入数组元素个数,k 是输入范围大小。
- 桶排序(Bucket Sort):将元素根据一定规则放入不同的桶中,每个桶内部进行排序,然后按顺序合并桶内的元素,重复执行直到排序完成。
function bucketSort(arr, bucketSize = 5) {if (arr.length === 0) return arr;const max = Math.max(...arr);const min = Math.min(...arr);const bucketCount = Math.floor((max - min) / bucketSize) + 1;const buckets = Array(bucketCount).fill().map(() => []);for (let i = 0; i < arr.length; i++) {const bucketIndex = Math.floor((arr[i] - min) / bucketSize);buckets[bucketIndex].push(arr[i]);}arr.length = 0;for (let i = 0; i < buckets.length; i++) {insertionSort(buckets[i]);arr.push(...buckets[i]);}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(bucketSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]
特点:适用于均匀分布的数据。
时间复杂度:O(n + k),其中 n 是输入数组元素个数,k 是桶的个数。
- 基数排序(Radix Sort):按照位数将元素分配到不同的桶中,然后按顺序合并桶内的元素,重复执行直到所有位数排序完成。
function radixSort(arr) {const max = Math.max(...arr);const maxLength = String(max).length;let bucket = Array.from({ length: 10 }, () => []);for (let i = 0; i < maxLength; i++) {for (let j = 0; j < arr.length; j++) {const digit = Math.floor(arr[j] / 10 ** i) % 10;bucket[digit].push(arr[j]);}arr.length = 0;for (let k = 0; k < bucket.length; k++) {arr.push(...bucket[k]);bucket[k].length = 0;}}return arr;
}const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(radixSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]
特点:适用于数字位数相同的整数排序。
时间复杂度:O(d * (n + k)),其中 d 是最大数字的位数,n 是输入数组元素个数,k 是输入范围大小。
每种排序算法都有不同的时间复杂度和适用场景。在实际应用中,根据数据规模和性能要求选择合适的排序算法是很重要的。
相关文章:
数据结构基础之排序算法
在数据结构中,常见的排序算法有以下几种: 冒泡排序(Bubble Sort):通过比较相邻元素并交换它们的位置,每轮将最大(或最小)的元素冒泡到末尾,重复执行直到排序完成。 fun…...

Spark(37):Streaming DataFrame 和 Streaming DataSet 创建
目录 0. 相关文章链接 1. 概述 2. socket source 3. file source 3.1. 读取普通文件夹内的文件 3.2. 读取自动分区的文件夹内的文件 4. kafka source 4.1. 导入依赖 4.2. 以 Streaming 模式创建 Kafka 工作流 4.3. 通过 Batch 模式创建 Kafka 工作流 5. Rate Source…...

SpringBoot集成Thymeleaf
Spring Boot 集成 Thymeleaf 模板引擎 1、Thymeleaf 介绍 Thymeleaf 是适用于 Web 和独立环境的现代服务器端 Java 模板引擎。 Thymeleaf 的主要目标是为开发工作流程带来优雅的自然模板,既可以在浏览器中正确显示的 HTML,也可以用作静态原型…...
算法练习(2):牛客在线编程03 二叉树
package jz.bm;import jz.TreeNode;import java.util.*;public class bm3 {/*** BM23 二叉树的前序遍历*/public int[] preorderTraversal (TreeNode root) {ArrayList<Integer> list new ArrayList<>();preOrder(root, list);int[] res new int[list.size()];fo…...

回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测
回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现TCN-BiLSTM时间卷积双向长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现TCN-BiLSTM时间卷积…...

Linux 系列 常见 快捷键总结
强制停止 Ctrl C 退出程序、退出登录 Ctrl D 等价 exit 查看历史命令 history !命令前缀,自动匹配上一个命令 (历史命令中:从最新——》最老 搜索) ctrl r 输入内去历史命令中检索 # 回车键可以直接执行 ctrl a 跳到命令开头 …...

OA系统构建排座
目录 一.排座的介绍,作用 1.排座介绍 A.前端实现 B.数据库实现 C.后端实现 2.排座作用 A.座位预订 B.座位安排 C. 实时座位状态显示 二.利用Layui实现排座 1.基础版(通过htmlcssjs实现) A.基础版源码(html): 2.进阶版 …...

微信小程序 居中、居右、居底和横向、纵向布局,文字在图片中间,网格布局
微信小程序居中、居右、横纵布局 1、水平垂直居中(相对父类控件)方式一:水平垂直居中 父类控件: display: flex;align-items: center;//子控件垂直居中justify-content: center;//子控件水平居中width: 100%;height: 400px //注意…...
【C++】总结2
文章目录 1.final和override关键字2.extern "C"的用法3.野指针和垂悬指针(悬空指针)4.指针指向的内存被释放是什么意思5.C和C的类型安全6.C中的重载、重写(覆盖)和隐藏的区别 1.final和override关键字 final和override是C11引入的关键字&…...

vue2项目中使用svg图标
在开发项目的时候经常会用到svg矢量图,而且我们使用SVG以后,页面上加载的不再是图片资源, 这对页面性能来说是个很大的提升,而且我们SVG文件比img要小的很多,放在项目中几乎不占用资源。 1、安装SVG依赖插件并配置加载器和路径 npm instal…...

阿里云盘自动每日签到无需部署无需服务器(仅限学习交流使用)
一、前言 阿里云盘自动每日签到,无需部署,无需服务器 执行思路:使用金山文档的每日定时任务,执行阿里云盘签到接口。 二、效果展示: 三、步骤: 1、进入金山文档网页版 金山文档官网:https:…...

Blazor前后端框架Known-V1.2.7
V1.2.7 Known是基于C#和Blazor开发的前后端分离快速开发框架,开箱即用,跨平台,一处代码,多处运行。 Gitee: https://gitee.com/known/KnownGithub:https://github.com/known/Known 概述 基于C#和Blazor…...

工业边缘计算为什么?
在工厂环境中使用边缘计算并不新鲜。可编程逻辑控制器(PLC)、微控制器、服务器和PC进行本地数据处理,甚至是微型数据中心都是边缘技术,已经在工厂系统中存在了几十年。在车间里看到的看板系统,打卡系统,历史…...

Training-Time-Friendly Network for Real-Time Object Detection 论文学习
1. 解决了什么问题? 目前的目标检测器很少能做到快速训练、快速推理,并同时保持准确率。直觉上,推理越快的检测器应该训练也很快,但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类:推理时…...
HTTP改HTTPS
tomcat中http协议改https 第一步,配置server.xml <?xml version"1.0" encoding"UTF-8"?> <Server port"8005" shutdown"SHUTDOWN"><Listener className"org.apache.catalina.startup.VersionLogger…...

网络层中一些零碎且易忘的知识点
异构网络:指传输介质、数据编码方式、链路控制协议以及数据单元格式和转发机制不同,异构即物理层和数据链路层均不同RIP、OSPF、BGP分别是哪一层的协议: -RIPOSPFBGP所属层次应用层网络层应用层封装在什么协议中UDPIPTCP 一个主机可以有多个I…...

【RabbitMQ】之高可用集群搭建
目录 一、RabbitMQ 集群原理 1、默认集群原理2、镜像集群原理3、负载均衡方案 二、RabbitMQ 高可用集群搭建 1、RabbitMQ 集群搭建2、配置镜像队列3、HAProxy 环境搭建4、Keepalived 环境搭建 一、RabbitMQ 集群简介 1、默认集群原理 3-1、RabbitMQ 集群简介 单台 RabbitM…...

【node.js】01-fs读写文件内容
目录 一、fs.readFile() 读取文件内容 二、fs.writeFile() 向指定的文件中写入内容 案例:整理txt 需求: 代码: 一、fs.readFile() 读取文件内容 代码: //导入fs模块,从来操作文件 const fs require(fs)// 2.调…...

GitHub仓库如何使用
核心:GitHub仓库如何使用 目录 1.创建仓库: 2.克隆仓库到本地: 3.添加、提交和推送更改: 4.分支管理: 5.拉取请求(Pull Requests): 6.合并代码: 7.其他功能&…...
雪花算法,在分布式环境下实现高效的ID生成
其实雪花算法比较简单,可能称不上什么算法就是一种构造UID的方法。 点1:UID是一个long类型的41位时间戳,10位存储机器码,12位存储序列号。 点2:时间戳的单位是毫秒,可以同时链接1024台机器,每台…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...