当前位置: 首页 > news >正文

运筹系列83:使用分枝定界求解tsp问题

1. 辅助函数

Node算子用来存储搜索树的状态。其中level等于path的长度,path是当前节点已经访问过的vertex清单,bound则是当前的lb。
这里的bound函数是一种启发式方法,等于当前路径的总长度,再加上往后走两步的最小值。

struct Nodelevel::Intpath::Vector{Int64} bound::Int
endfunction totaldist(adj_mat::Array{Int64,2},t::Vector{Int64} )n = length(t)sum([adj_mat[t[i],t[i+1]] for i in 1:n-1])+adj_mat[t[n],t[1]] 
endfunction bound(adj_mat::Array{Int64,2}, path::Vector{Int64} )_bound = 0n = size(adj_mat)[1]determined, last = path[1:end-1], path[end]remain = setdiff(1:n,path)for i in 1:length(path)-1;_bound += adj_mat[path[i],path[i + 1]];end_bound += minimum([adj_mat[last,i] for i in remain])p = [path[1];remain]for r in remain_bound+=minimum([adj_mat[r,i] for i in setdiff(p,r)])endreturn _bound
end;

2. 分枝定界代码

这里用priorityQueue存储节点,用Queue也是一样的。
分枝条件为bound<ub,往下搜索所有没有探访过的节点,使用函数setdiff(1:n,v.path)。当然这里可以尝试将搜索范围缩小,比如仅搜索最近的一些节点,不过就不保证最优性了。
当搜索到level==n-1时,获得一个可行解,并且停止往下探索。此时如果路径长度比ub还短,则更新ub。

function solve(adj_mat::Array{Int64,2},ub::Int64 = 10^9)optimal_tour = Vector{Int64}()optimal_length = 0n = size(adj_mat)[1]PQ = PriorityQueue{Node,Int}()path = Vector{Int64}([1])v = Node(1,path,bound(adj_mat,path))enqueue!(PQ,v,v.bound) while length(PQ)>0v = dequeue!(PQ)if v.bound<ublevel = v.level+1b = 0for i in setdiff(1:n,v.path)path = [v.path;i]if level==n-1 #终止条件push!(path,setdiff(1:n,path)[1])_len = totaldist(adj_mat,path)if _len < ubub = _lenoptimal_length = _lenoptimal_tour = pathendelse # 进行分叉b = bound(adj_mat,path)if b < ub # 分枝条件enqueue!(PQ,Node(level,path,b),b)endendendendendoptimal_tour,optimal_length
end
solve([0 14 4 10 20;14 0 7  8  7;4  5  0  7  16;11 7 9 0 2;18 7 17 4 0])

输出([1, 4, 5, 2, 3], 30)。
TSP时一个NPhard问题,当点数增多时,使用b&b的算法性能会急速下降。

相关文章:

运筹系列83:使用分枝定界求解tsp问题

1. 辅助函数 Node算子用来存储搜索树的状态。其中level等于path的长度&#xff0c;path是当前节点已经访问过的vertex清单&#xff0c;bound则是当前的lb。 这里的bound函数是一种启发式方法&#xff0c;等于当前路径的总长度&#xff0c;再加上往后走两步的最小值。 struct …...

linux 指令 第3期

cat cat 指令&#xff1a; 首先我们知道一个文件内容属性 我们对文件操作就有两个方面&#xff1a;对文件内容和属性的操作 扩展&#xff1a;echo 指令 直接打印echo后面跟的字符串 看&#xff1a; 这其实是把它打印到了显示器上&#xff0c;我们也可以改变一下它的打印位置…...

测试用例实战

测试用例实战 三角形判断 三角形测试用例设计 测试用例编写 先做正向数据&#xff0c;再做反向数据。 只要有一条边长为0&#xff0c;那就是不符合要求&#xff0c;不需要再进行判断&#xff0c;重复。 四边形 四边形测试用例...

Unity XML1——XML基本语法

一、XML 概述 ​ 全称&#xff1a;可拓展标记语言&#xff08;EXtensible Markup Language&#xff09; ​ XML 是国际通用的&#xff0c;它是被设计来用于传输和存储数据的一种文本特殊格式&#xff0c;文件后缀一般为 .xml ​ 我们在游戏中可以把游戏数据按照 XML 的格式标…...

了解Unity编辑器之组件篇Playables和Rendering(十)

Playables 一、Playable Director&#xff1a;是一种用于控制和管理剧情、动画和音频的工具。它作为一个中央控制器&#xff0c;可以管理播放动画剧情、视频剧情和音频剧情&#xff0c;以及它们之间的时间、顺序和交互。 Playable Director组件具有以下作用&#xff1a; 剧情控…...

python的包管理器pip安装经常失败的解决办法:修改pip镜像源

pip 常用的国内镜像源&#xff1a; https://pypi.tuna.tsinghua.edu.cn/simple/ // 清华 http://mirrors.aliyun.com/pypi/simple/ // 阿里云 https://pypi.mirrors.ustc.edu.cn/simple/ // 中国科技大学 http://pypi.hustunique.com/ // 华中理…...

忘记安卓图案/密码锁如何解锁?

如何解锁Android手机图案锁&#xff1f;如何删除忘记的密码&#xff1f;Android 手机锁定后如何重置&#xff1f;这是许多智能手机用户在网上提出的几个问题。为了回答这些问题&#xff0c;我们想出了一些简单有效的方法来解锁任何设备而不丢失数据。 忘记手机密码可能会令人恐…...

Bash编程

目录&#xff1a; bash编程语法bash脚本编写 1.bash编程语法 Bash 编程基础 变量引号数组控制语句函数 Bash 变量 语法&#xff1a; Variable_namevalue Bash 变量定义的规则 变量名区分大小写&#xff0c;a和A为两个不同的变量。变量名可以使用大小写字母混编的形式进行…...

vue指令-v-model修饰符

vue指令-v-model修饰符 1、目标2、语法 1、目标 让v-modelv-mode拥有更强大的功能 2、语法 v-model.修饰符“Vue数据变量” .number 以parseFloat转成数字类型 .trime 去除首位空白字符 .lazy 在change时触发而非input时示例1 <template><div id"app"&g…...

【论文精读CVPR_2023】3D-Aware Face Swapping

【论文精读CVPR_2023】3D-Aware Face Swapping 前言Abstract1. Introduction2. Related WorkFace Swapping.3D-Aware Generative Models.GAN Inversion.3. Method3.1. Overview3.2. Inferring 3D Prior from 2D Images3.3. Face Swapping via Latent Code Manipulation3.4. Joi…...

flutter开发实战-自定义相机camera功能

flutter开发实战-自定义相机camera功能。 Flutter 本质上只是一个 UI 框架&#xff0c;运行在宿主平台之上&#xff0c;Flutter 本身是无法提供一些系统能力&#xff0c;比如使用蓝牙、相机、GPS等&#xff0c;因此要在 Flutter 中调用这些能力就必须和原生平台进行通信。 实现…...

重排链表——力扣143

文章目录 题目描述法一&#xff1a;寻找链表中点、链表逆序、链表合并 题目描述 法一&#xff1a;寻找链表中点、链表逆序、链表合并 void reorderList(ListNode* head){if(headnullptr){return;}// 找到中点 ListNode* mid FindMiddle(head);ListNode *h1head, *h2mid->ne…...

Lambda表达式常见的Local variable must be final or effectively final原因及解决办法

目录 Local variable must be final or effectively final错误原因 解决办法按照要求定义为final&#xff08;不符合实情&#xff0c;很多时候是查库获取的变量值&#xff09;使用原子类存储变量&#xff0c;保证一致性AtomicReference常用原子类 其它 Local variable must be …...

YOLOv5改进系列(16)——添加EMA注意力机制(ICASSP2023|实测涨点)

【YOLOv5改进系列】前期回顾: YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析 YOLOv5改进系列(1)——添加SE注意力机制 YOLOv5改进系列(2)——添加...

[SSM]GoF之代理模式

目录 十四、GoF之代理模式 14.1对代理模式的理解 14.2静态代理 14.3动态代理 14.3.1JDK动态代理 14.3.2CGLIB动态代理 十四、GoF之代理模式 14.1对代理模式的理解 场景&#xff1a;拍电影的时候&#xff0c;替身演员去代理演员完成表演。这就是一个代理模式。 演员为什…...

桥梁安全生命周期监测解决方案

一、方案背景 建筑安全是人们生产、经营、居住等经济生活和人身安全的基本保证&#xff0c;目前我国越来越多的建筑物逐 步接近或者已经达到了使用年限&#xff0c;使得建筑物不断出现各种安全隐患&#xff0c;对居民的人身安全和财产安全产 生不利影响&#xff0c;因此房…...

图技术在 LLM 下的应用:知识图谱驱动的大语言模型 Llama Index

LLM 如火如荼地发展了大半年&#xff0c;各类大模型和相关框架也逐步成型&#xff0c;可被大家应用到业务实际中。在这个过程中&#xff0c;我们可能会遇到一类问题是&#xff1a;现有的哪些数据&#xff0c;如何更好地与 LLM 对接上。像是大家都在用的知识图谱&#xff0c;现在…...

SpringBoot自动配置、启动器原理爆肝解析(干货满满)

文章目录 前言一、SpringBoot优势概要二、SpringBoot自动配置1. ☠注意☠2.自动配置详解 三、Starter&#xff08;场景启动器&#xff09;原理总结 前言 本文详细解析面试重点—SpringBoot自动配置原理、场景启动器原理&#xff0c;深入源码&#xff0c;直接上干货、绝不拖泥带…...

chrome扩展控制popup页面动态切换

文章目录 1、通过控制元素的显示隐藏达到popup页面切换的效果2、通过监听页面重新加载完成不同popup的切换3、直接修改popup页面location.href&#xff0c;无需刷新页面 1、通过控制元素的显示隐藏达到popup页面切换的效果 下面在mv2版本的API下完成 实际上通过控制页面元素实…...

【AI】《动手学-深度学习-PyTorch版》笔记(三):PyTorch常用函数

AI学习目录汇总 1、torch.arange 返回一维张量(一维数组),官网说明,常见的三种用法如下 输入:torch.arange(5) 输出:tensor([0, 1, 2, 3, 4]) 输入:torch.arange(5, 16) 输出:tensor([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) 输入:torch.arange(1, 25, 2) …...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

接口 RESTful 中的超媒体:REST 架构的灵魂驱动

在 RESTful 架构中&#xff0c;** 超媒体&#xff08;Hypermedia&#xff09;** 是一个核心概念&#xff0c;它体现了 REST 的 “表述性状态转移&#xff08;Representational State Transfer&#xff09;” 的本质&#xff0c;也是区分 “真 RESTful API” 与 “伪 RESTful AP…...