图神经网络(GNN)入门学习笔记(直观且简单)
文章目录
- 图的定义和表示
- 可以使用图数据结构的问题
- 将图结构用于机器学习的挑战
- 最基本的图神经网络概述
- 汇聚操作
- 基于信息传递的改进图神经网络
- 全局向量信息的利用
本篇文章参考发表于Distill上的图神经网络入门博客: A Gentle Introduction to Graph Neural Networks。同时,所有的图片也都来源于该博客。本文主要是记录本人自己的学习体会与心得,帮助其他初学者能够更快入门图神经网络而无需看冗长的英文原文。
图的定义和表示
图可以用三个符号进行表示:
- 顶点集(V):图中的所有顶点构成一个顶点集;
- 边集(E):图中的所有边构成一个边集;
- 图整体(U):完整考虑一个图的所有顶点和边以及对应的拓扑结构,图的整体被称为U。
在计算机中,无论是顶点集、边集或者图整体都可以使用向量进行表示。顶点向量中的各个值表示顶点的属性;边向量中的各个值表示边的属性;图向量同理。
另外,一张图也可以使用离散数学中的邻接矩阵进行表示,具体内容可以参见离散数学课程教材。
很多现实中的问题,都可以把问题中的实体转化为图的顶点,把实体之间的关系转换为图中的边,从而使用图来表示该现实问题。
可以使用图数据结构的问题
可以使用图数据结构的问题可以分为三个类型,分别是图层面的问题、顶点层面的问题和边层面的问题。
-
图层面的问题:找出含有两个环的图;
-
顶点层面的问题:将图中的所有顶点划分为两类;
-
边层面的问题:给图中的所有边判定类型。
将图结构用于机器学习的挑战
将图结构应用于机器学习领域的最大挑战是如何表示图结构,使得其能够与搭建的神经网络兼容,并被计算机计算和处理。
图结构中包含有四类信息:顶点集信息、边集信息、图整体信息和连接性信息。前面三种类型的信息都可以通过向量或矩阵的方式进行表示,但是连接性信息的表示会更加麻烦。
表示连接性的最直观方法就是使用邻接矩阵,但是很多情况下邻接矩阵都是稀疏的,因此会无意义地占用非常大的存储空间。即使通过稀疏化的方式表示邻接矩阵也会有计算机难以处理的问题。
为此,可以通过邻接表的形式表示邻接矩阵。邻接表的大小与边的数量成正比,其中的每一个元素记录了哪两个顶点之间存在一条边。
下面将正式开始介绍图神经网络。
最基本的图神经网络概述
图神经网络本质上就是一个特用于图模型的神经网络。
图神经网络的基本思路如下:由于上面我们已经提到,图中除了连通性信息外,其他的三个属性(顶点集、边集和整体)都可以用能够代入神经网络进行计算的向量来进行表示,因此,我们对于三类属性,分别构造一个神经网络。
也就是说,一个神经网络以顶点集向量作为输入,一个神经网络以边集向量作为输入,另一个神经网络以整体向量作为输入。这样的三个网络组合在一起,就构成了图神经网络的一个层。多个图神经网络层叠加在一起,就构成了完整的图神经网络。
需要注意的有两点:首先,是每一个图神经网络层中的神经网络的输出形状都与输入形状相同,也就是说,输入的向量长度和输出的向量长度相同;其次,对于图的连通性,图神经网络不会对其进行修改,也就是说,一张图经过了图神经网络,其连通性不会发生改变:原来相连的两个顶点仍然相互连接。
面对分类任务,只需要在最后一层输出加上全连接层和softmax分类即可。基本原理也如下图所示:
汇聚操作
有时在实际问题中会遇到一些特殊的情况,使得无法同时获得顶点集的向量、边集的向量和整体的向量,这个时候,就可以使用汇聚的思想来补充生成当前没有的向量。下面将以缺失顶点集为例进行说明,其他情况可以类比推理。
当顶点集缺失时,每一个顶点连接了多条边,因此可以把每个顶点连接的多条边的向量进行叠加,最后再加上整体的向量,即可替代该顶点的向量。
基于信息传递的改进图神经网络
上面所提到的基本图神经网络存在一个问题,那就是没有利用图的连通性,从而损失了图中的一部分信息。
为了能够利用连通性,下面将给出一种基于信息传递的改进的图神经网络。
以顶点集为例。在改进的网络中,当一个顶点的向量需要准备待入顶点对应的神经网络进行更新时,并不是直接将该点的结果代入,而是将该顶点以及与该顶点直接相连的顶点的向量相加后进行代入,从而利用上之前未被利用的连通性信息。
边集的信息传递改进图神经网络原理类似。
全局向量信息的利用
之前的介绍中,我们只是说了全局向量是需要计算的以及其计算方法,但是并没有介绍其使用过程,下面将进行介绍。
全局向量可以抽象为一个虚拟的顶点(被称为master node),该顶点与图中的所有顶点相连,同时与图中的所有边相连(点如何与边相连?这是因为这个顶点是抽象的,也可以把这个虚拟顶点想象为一个又是顶点又是边的东西)。
基于上面介绍的信息传递的原理,每次该虚拟顶点在经过全局神经网络更新之前,需要叠加图中当前状态其他所有顶点和边的向量信息。通过这样的方式,就成功利用了图的全局信息。
相关文章:

图神经网络(GNN)入门学习笔记(直观且简单)
文章目录 图的定义和表示可以使用图数据结构的问题将图结构用于机器学习的挑战最基本的图神经网络概述汇聚操作基于信息传递的改进图神经网络全局向量信息的利用 本篇文章参考发表于Distill上的图神经网络入门博客: A Gentle Introduction to Graph Neural Network…...

【Java开发】 Mybatis-Flex 01:快速入门
Mybatis 作为头部的 ORM 框架,他的增强工具可谓层出不穷,比如出名的 Mybatis-Plus 和 阿里云开源的 Fluent-MyBatis,如今出了一款 Mybatis-Flex ,相比前两款功能更为强大、性能更为强悍,不妨来了解一下。 目录 1 Myba…...

企业级业务架构学习笔记<二>
一.业务架构基础 业务架构的定义 以实现企业战略为目标,构建企业整体业务能力规划并将其传导给技术实现端的结构化企业能力分析方法 (业务架构可以从企业战略触发,按照企业战略设计业务及业务过程,业务过程时需要业务能力支撑的࿰…...

Minio在windows环境配置https访问
minio启动后,默认访问方式为http,但是有的时候我们的访问场景必须是https,浏览器有的会默认以https进行访问,这个时候就需要我们进行配置上的调整,将minio从http访问升级到https。而查看minio的官方文档,并…...

安装JDK环境(Windows+Linux双教程)
今日一语:今天的事情不去做,到了明天就成了麻烦,到了下个月就成了隐患,到了明年只剩下悔恨和惋惜 Linux 从Oracle网站下载linux的rpm包java -version 查询java环境是否已经安装 如果已经安装,可以选择卸载重装或者直接…...

SVG图标,SVG symbols,SVG use标签
SVG图标,SVG symbols 项目中图标的使用,趋势是使用svg作图标的,优点如下 兼容现有图片能力前提还支持矢量 可读性好,有利于SEO与无障碍 在性能和维护性方面也比iconfont要强很多 怎么在项目中优雅的使用svg图标,下面…...

常用css 笔记
0、定义变量 :root { --primary-color: #007bff;} .button { background-color: var(--primary-color);} 1、水平垂直居中 div {width: 100px;height: 100px;position: absolute;top: 0;right: 0;bottom: 0;left: 0;margin: auto; }父级控制子集居中 .parent {display: fle…...

git的ssh方式对接码云
一、环境准备: 1、git下载,360管家或是百度。 2、vs2022,百度下载。 二、配置git: 1、打开准备存放文件的文件夹,右键,选择“Git Bash here”,弹出命令窗口, 输入:ss…...

Golang之路---02 基础语法——变量
Golang变量 变量的声明 声明变量的一般形式是使用 var 关键字 Go 语言是静态类型语言,编译时,编译器会检查变量的类型,所以要求所有的变量都要有明确的类型。 1 :一个变量单行声明 语法格式: var name type var是关…...

Webpack5 DefinePlugin的作用
在Webpack 5中,DefinePlugin是一个插件,用于创建全局常量,这些常量可以在编译过程中被引用。它的作用是允许开发人员在代码中定义全局变量,这些变量在构建过程中将被替换为其对应的值。 DefinePlugin并不是必须的,但它…...

Verilog语法学习——LV7_求两个数的差值
LV7_求两个数的差值 题目来源于牛客网 [牛客网在线编程_Verilog篇_Verilog快速入门 (nowcoder.com)](https://www.nowcoder.com/exam/oj?page1&tabVerilog篇&topicId301) 题目 描述 根据输入信号a,b的大小关系,求解两个数的差值:输入信号a,b…...

C#匿名函数,lambda表达式笔记
一.匿名函数 匿名函数是一种定义时不起函数名的技术,因此无法直接调用,通常用来赋值给委托后被委托调用。在匿名方法中您不需要指定返回类型,它是从方法主体内的 return 语句推断的 它的语法形式为:delegate (input-parameters)…...

【图论】LCA(倍增)
一.LCA介绍 LCA通常指的是“最近共同祖先”(Lowest Common Ancestor)。LCA是一种用于解决树或图结构中两个节点的最低共同祖先的问题的算法。 在树结构中,LCA是指两个节点的最近层级的共同祖先节点。例如,考虑一棵树,…...

QT 使用串口
目录 1.1.1 添加库,添加类 1.1.2 定义串口 1.1.3 搜索串口 1.1.4 设置和打开串口 1.1.5 读取数据 1.1.6 发送数据 1.1.7 关闭串口 1.1.1 添加库,添加类 首先,QT5 是自带 QSerialPort(Qt5 封装的串口类)这个类的,使用时…...

GitHub上怎么寻找项目?
前言 下面由我精心整理的关于github项目资源搜索的一些方法,这些方法可以帮助你更快更精确的搜寻到你需要的符合你要求的项目。 写文章不易,如果这一篇问文章对你有帮助,求点赞求收藏~ 好,下面我们直接进入正题——> 首先我…...

如何快速用Go获取短信验证码
要用Go获取短信验证码,通常需要连接到一个短信服务提供商的API,并通过该API发送请求来获取验证码。由于不同的短信服务提供商可能具有不同的API和授权方式,我将以一个简单的示例介绍如何使用Go语言来获取短信验证码。 在这个示例中࿰…...

详解Mybatis查询之resultType返回值类型问题【4种情况】
编译软件:IntelliJ IDEA 2019.2.4 x64 操作系统:win10 x64 位 家庭版 Maven版本:apache-maven-3.6.3 Mybatis版本:3.5.6 文章目录 引言一、查询单行数据返回单个对象二、查询多行数据返回对象的集合三、 查询单行数据返回Map[Key,…...

Python-Python基础综合案例:数据可视化 - 折线图可视化
版本说明 当前版本号[20230729]。 版本修改说明20230729初版 目录 文章目录 版本说明目录知识总览图Python基础综合案例:数据可视化 - 折线图可视化json数据格式什么是jsonjson有什么用json格式数据转化Python数据和Json数据的相互转化 pyecharts模块介绍概况如何…...

CSS盒子模型(HTML元素布局)
CSS盒子模型是一种用于描述HTML元素布局的模型,它将每个元素看作是一个矩形的盒子,每个盒子由内容、内边距、边框和外边距组成。 盒子模型包括以下几个部分: 内容区域(Content) 内容区域是盒子中实际显示内容的部分&am…...

PostgreSQL-Centos7源码安装
卸载服务器上的pg13 本来是想删除原来的postgis重新源码安装就行,但是yum安装的PostgreSQL不能直接使用,会提示以下问题: 之前服务是用yum安装的,现在需要删除 -- 删除数据的postgis插件 drop extension postgis; drop extension postgis cascade;删除相关安装包 # 查询…...

QTday2信号和槽
点击登录按钮,关闭Widget登录窗口,打开QQList窗口 widget.cpp #include "widget.h"void my_setupUI(Widget *w);Widget::Widget(QWidget *parent): QWidget(parent) {my_setupUI(this); }Widget::~Widget() { }void Widget::login_slots() {//fixemit jump_signal(…...

信驰达推出RTL8720DN系列2.4G和5G双频Wi-Fi+蓝牙二合一模块
近日,领先的无线物联网通信模块厂商深圳信驰达科技RF-star推出了基于RTL8720DN SoC的2.4 GHz和5 GHz双频Wi-Fi蓝牙二合一模块—RF-WM-20DNB1。 图 1信驰达RF-WM-20DNB1 Wi-Fi模块 RF-WM-20DNB1是一款低功耗单芯片无线蓝牙和Wi-Fi组合模块,支持双频(2.4 G…...

【LeetCode】剑指 Offer Ⅱ 第1章:整数(5道题) -- Java Version
题库链接:https://leetcode.cn/problem-list/e8X3pBZi/ 题目解决方案剑指 Offer II 001. 整数除法快速除 ⭐剑指 Offer II 002. 二进制加法模拟:StringBuilder ⭐剑指 Offer II 003. 前 n 个数字二进制中 1 的个数动规:res[i] res[i & (…...
解析数据可视化工具:如何选择最合适的软件
在当今信息爆炸的时代,数据已成为各行各业的重要资源。为了更好地理解和分析数据,数据可视化成为一种必不可少的工具。市面上数据可视化工具不说上千也有上百,什么帆软、powerbi、把阿里datav,腾讯云图、山海鲸可视化等等等等&…...

大数据面试题之Elasticsearch:每日三题(七)
大数据面试题之Elasticsearch:每日三题 1.Elasticsearch索引文档的流程?2.Elasticsearch更新和删除文档的流程?3.Elasticsearch搜索的流程? 1.Elasticsearch索引文档的流程? 协调节点默认使用文档ID参与计算(也支持通过routing)&a…...

ubuntu20.04 安装 Qt5.15
目录 安装前工作 选择安装QT的哪个版本 安装时候选择哪些组件 安装Qt5.15 在线安装 我选择的组件 源码包安装 测试 安装前工作 ubuntu20.04.3安装Qt6.22操作步骤_ubuntu安装qt6_sonicss的博客-CSDN博客 # 安装g、gcc编译器 sudo apt-get install build-essential 安装l…...

web之标签元素转换成图片、a标签元素下载图片、获取浏览器窗口名称、重命名、元素定位、旋转、拉伸文字、文字向心对齐
文章目录 准备版本二的效果图版本一htmlJavaScript 版本二htmlJavaScript 准备 NPM下载指令 npm install dom-to-image框架加载 in ES6 import domtoimage from dom-to-image;in ES5 var domtoimage require(dom-to-image);CDN(标签)加载 案例 <script src"dist/dom…...

你应该知道的关于PCB布线的31条建议
1、走线长度应包含过孔和封装焊盘的长度。 2、布线角度优选135角出线方式,任意角度出线会导致制版出现工艺问题。 图1 PCB布线的角度 3、布线避免直角或者锐角布线,导致转角位置线宽变化,阻抗变化,造成信号反射,如图2…...

matlab中dir的各种使用方法(包括递归遍历子文件夹)
遍历文件夹1下的所有文件夹和文件(不会递归遍历): listdir(’ D:\文件夹1’);遍历文件夹1及其所有子文件夹下的所有文件夹和文件(会递归遍历): listdir(’ D:\文件夹1\** );遍历文件夹1下的所有csv文件&…...

软件测试/测试开发丨Selenium环境安装与使用
Selenium 官方网站: www.selenium.dev/ 简介: 用于web浏览器测试的工具;支持的浏览器包括IE,Firefox,Safari,Chrome,Edge等;使用简单,可使用Java,Python等…...