当前位置: 首页 > news >正文

论文精读之BERT

目录

1.摘要(Abstract)

2.引言(Introduction):

3.结论(Conlusion):

4.BERT模型算法:

5.总结


1.摘要(Abstract)

与别的文章的区别是什么:BERT是用来设计去训练深的 双向的 表示,使用没有标号的数据,再联合左右的上下文信息。(改进在什么地方)

效果有多好:在11个NLP任务上取得了很好的效果。需要讲清绝对精读以及相对精读。(结果好在哪)


2.引言(Introduction):

语言模型的简单介绍:1.建模这些句子之间的关系 2.实体命名的识别

摘要第一段的扩充:用预训练模型做特征表示的时候,使用的两种策略:基于特征与基于微调

主要想法:

如何解决所遇到的问题: BERT是用来减轻之前提到过的语言模型,选用一种带掩码的语言模型(masked language model )


贡献点:双向信息的重要性(句子从左看到右,从右看到左)、在BERT上做微调效果很好、代码开源


3.结论(Conlusion):

无监督的预训练很重要(在计算机视觉领域,在没有标签的数据集上做训练比在有标签的数据集上做训练效果会更好);主要贡献是将这些发现进一步推广到深度双向架构,使相同的预训练模型能够成功处理一系列的 NLP 任务。

4.BERT模型算法:

BERT中的两个步骤:

预训练:在预训练里面,BERT模型是在一个没有标号的数据上进行训练的

微调:在微调时同样适用一个BERT模型,在它的权重就是被初始化成我们在预训练中间得到的那个权重,所有的权重在微调时都会被参与训练(用的是有标号的数据)。

 

预训练与微调之间不一样的部分:

预训练中两个关键的东西:目标函数与做预训练的数据

BERT的架构:

就是一个多层的transformer的编码器

5.总结


在本篇论文的结论中最大贡献是双向性(在写一篇论文的时候,最好有一个卖点,而不是这里好那里也好)。
选了选双向性带来的不好是什么?做一个选择会得到一些,也会失去一些。
缺点是:与GPT(Improving Language Understanding by Generative Pre-Training)比,BERT用的是编码器,GPT用的是解码器。BERT做机器翻译、文本的摘要(生成类的任务)不好做。
但分类问题在NLP中更常见。
完整解决问题的思路:在一个很大的数据集上训练好一个很宽很深的模型,可以用在很多小的问题上,通过微调来全面提升小数据的性能(在计算机视觉领域用了很多年),模型越大,效果越好(很简单很暴力)。

相关文章:

论文精读之BERT

目录 1.摘要(Abstract) 2.引言(Introduction): 3.结论(Conlusion): 4.BERT模型算法: 5.总结 1.摘要(Abstract) 与别的文章的区别是什么:BERT是用来设计去…...

实战:Docker+Jenkins+Gitee构建CICD流水线

文章目录 前言Jenkins部署创建Jenkins docker-compose配置maven源启动Jenkins容器安装插件Gitee ssh公匙配置与测试项目提交 Jenkins创建流水线写在最后 前言 持续集成和持续交付一直是当下流行的开发运维方式,CICD省去了大量的运维时间,也能够提高开发…...

7.25 Qt

制作一个登陆界面 login.pro文件 QT core guigreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# The following define makes your compiler emit warnings if you use # any Qt feature that has been marked deprecated (the exact warnings # depend on …...

P1420 最长连号

题目描述 输入长度为 n n n 的一个正整数序列,要求输出序列中最长连号的长度。 连号指在序列中,从小到大的连续自然数。 输入格式 第一行,一个整数 n n n。 第二行, n n n 个整数 a i a_i ai​,之间用空格隔开…...

UVA-1354 天平难题 题解答案代码 算法竞赛入门经典第二版

GitHub - jzplp/aoapc-UVA-Answer: 算法竞赛入门经典 例题和习题答案 刘汝佳 第二版 这道题需要: 1. 遍历二叉树的每种构成方式。我这里每次把当前所有结点列出,然后遍历选取两个组合构成一个新结点,原来的结点剔除,新结点加入。…...

电机故障诊断(python程序,模型为CNN结合LSTM)

代码运行环境要求:TensorFlow版本>2.4.0,python版本>3.6.0 运行效果视频:电机故障诊断(python代码)_哔哩哔哩_bilibili 1.电机常见的故障类型有以下几种: 轴承故障:轴承是电机运转时最容…...

ubuntu 20.04 rtc时间显示问题探究

1、硬件与软件 本次测试的硬件为RK3568芯片,操作系统为ubuntu 20.04。 2、RTC与系统时间 先说结果,如果RTC驱动不可用或者RTC内部存储的时间非法, 那么操作系统会存储上一次有效的时间,当再次上电时,date命令会使用存储…...

数值分析第七章节 用Python实现非线性方程与方程组的数值解法

参考书籍:数值分析 第五版 李庆杨 王能超 易大义编 第7章 非线性方程与方程组的数值解法 文章声明:如有发现错误,欢迎批评指正 文章目录 迭代法求解 x e x − 1 0 xe^x-10 xex−10牛顿法求解 x e x − 1 0 xe^x-10 xex−10简化牛顿法求解 …...

利用MATLAB制作DEM山体阴影

在地理绘图中,我们使用的DEM数据添加山体阴影使得绘制的图件显得更加的美观。 GIS中使用ArcGIS软件就可以达到这一目的,或者使用GMT,同样可以得到山体阴影的效果。 本文提供了一个MATLAB的函数,可以得到山体阴影。 clear all;c…...

ubuntu 使用 rsync 的 SSH 方式同步备份远程WEB服务器

ubuntu 20.04 自带 rsync ,对于 WEB 服务器这种更新频率不高的情况,直接使用定时同步复制远程服务器的方法,比较直接和简单! $ rsync --version rsync version 3.1.3 protocol version 31 参考: Ubuntu20.04中的rsyn…...

机器学习 | Python实现NARX模型预测控制

机器学习 | Python实现NARX模型预测控制 目录 机器学习 | Python实现NARX模型预测控制效果一览基本介绍研究内容程序设计参考资料效果一览 基本介绍 机器学习 | Python实现NARX模型预测控制 研究内容 贝叶斯黑盒模型预测控制,基于具有外源输入的非线性自回归模型的预期自由能最…...

M5ATOMS3基础03给ROS1发一个问候(rosserial)

引出问题 关于之前2020年的博客: 01. ESP8266和ROS调试一些问题汇总 02. ESP8266和ESP32配置(需使用ROS1和ROS2) 效果展示 使用M5ATOMS3与ROS1(kinetic,melodic,noetic)版本通信比较通用的是…...

基于Vue3实现鼠标按下某个元素进行移动,实时改变左侧或右侧元素的宽度,以及点击收起或展开的功能

其原理主要是利用JavaScript中的鼠标事件来控制CSS样式。大致就是监听某个DOM元素的鼠标按下事件,以及按下之后的移动事件和松开事件。在鼠标按下且移动过程中,可实时获得鼠标的X轴坐标的值,通过简单计算,可计算出目标元素的宽度&…...

使用MyBatis(2)

目录 一、定义接口、实体类、创建XML文件实现接口) 二、MyBatis的增删改查 🍅1、MyBatis传递参数查询 🎈写法一 🎈写法二 🎈两种方式的区别 🍅2、删除操作 🍅3、根据id修改用户名 &#x…...

【FPGA/D6】

2023年7月25日 VGA控制器 视频23notecodetb 条件编译error时序图保存与读取??RGBTFT显示屏 视频24PPI未分配的引脚或电平的解决方法 VGA控制器 视频23 note MCU单片机 VGA显示实时采集图像 行消隐/行同步/场同步/场消隐 CRT:阴极射线管 640…...

【WebGIS实例】(10)Cesium开场效果(场景、相机旋转,自定义图片底图)

效果 漫游效果视频: 【WebGIS实例】(10)Cesium开场效果(场景、相机 点击鼠标后将停止旋转并正常加载影像底图: 代码 可以直接看代码,注释写得应该比较清楚了: /** Date: 2023-07-28 16:21…...

【Spring】IOC的原理

一、 IOC 的概念 Spring 的 IOC ,即控制反转,所谓控制反转 —— 本来管理业务对象(bean)的操作是由我们程序员去做的,但是有了 Spring 核心容器后,这些 Bean 对象的创建和管理交给我们Spring容器去做了&am…...

AI加速游戏开发 亚马逊云科技适配3大场景,打造下一代游戏体验

随着疫情的消散,中国游戏产业正在快速前进。在伴随着游戏产业升级的同时,整个行业都在面临着新的挑战与新的诉求。亚马逊云科技游戏研发解决方案和服务,覆盖端到端3大场景,为游戏公司与游戏开发人员赋能。 场景1:AI辅助…...

C++ | 继承(基类,父类,超类),(派生类,子类)

文章参考:https://blog.csdn.net/war1111886/article/details/8609957 一 .继承中的访问权限关系 1.基类,父类,超类是指被继承的类,派生类,子类是指继承于基类的类. 2…...

Commands Of Hadoop

序言 持续整理下常用的命令cuiyaonan2000163.com Command 文件拷贝 当从多个源拷贝时,如果两个源冲突,distcp会停止拷贝并提示出错信息,. 如果在目的位置发生冲突,会根据选项设置解决。 默认情况会跳过已经存在的目标文件&am…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

idea大量爆红问题解决

问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

ES6从入门到精通:前言

ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

网络编程(UDP编程)

思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...