ChatGPT与高等教育变革:价值、影响及未来发展
最近一段时间,ChatGPT吸引了社会各界的目光,它可以撰写会议通知、新闻稿、新年贺信,还可以作诗、写文章,甚至可以撰写学术论文。比尔·盖茨、马斯克等知名人物纷纷为此发声,谷歌、百度等知名企业纷纷宣布要提供类似产品。在很多领域,人们都担心工作被ChatGPT替代。在教育领域,许多北美学校老师如临大敌,纷纷宣布禁止学生使用ChatGPT写作业。我国也有期刊宣布,使用ChatGPT撰写文章必须声明,否则可能退稿或撤稿。一时间,整个社会议论纷纷。那么,ChatGPT为什么突然这么吸引人?它对教育究竟有什么价值?又会带来什么冲击和影响?未来应该怎么发展呢?
一、ChatGPT为什么突然如此吸引人
ChatGPT其实也不能算是突然成功,准确地说,应该是人工智能发展由量变引起质变的一个结果。1950年,“计算之父”图灵提出了设想:机器真的能思考吗 1956年,麦卡锡、明斯基以及香农等人在达特茅斯会议上提出了“人工智能”(Artificial Intelligence, 简称AI)的概念,之后人工智能先后经历了3次浪潮:第一次浪潮是20世纪五六十年代。在图灵提出著名的“图灵测试”后,逐渐产生了许多所谓的人工智能程序。比如,1966年麻省理工学院Joseph Weizenbaum发明了Eliza, 这是一个可以通过对话帮助病人完成心理恢复的心理治疗小程序,尽管当时的智能技术很简单,但堪称是微软小冰、谷歌Siri、ChatGPT等聊天机器人的鼻祖。不过,到了70年代后期,人们发现人工智能只能解决一些很简单的问题,人工智能进入低潮期。第二次浪潮发生在20世纪八九十年代。当时,发端于模式识别领域的基于统计推理的机器学习方法取得了较大进展,各个领域出现了比较实用的专家系统。其中最具影响力的事件就是1997年IBM研发的人工智能程序“深蓝”战胜当时的世界国际象棋棋王卡斯帕罗夫。不过,人们随后发现这些成果距离实际生活还是比较遥远,所以在2000年左右,第二次人工智能的浪潮又破灭了。人工智能第三次浪潮发生在2006年至今。基于深度神经网络的机器学习的发展掀起了更加猛烈的人工智能第三次浪潮,代表性事件是2016年AlphaGo 4∶1战胜围棋高手李世石,随后波士顿动力公司的人形机器人Atlas也展示了高超的感知和控制能力,图像识别、语音识别、自动翻译广泛被应用到许多领域,微软小冰、谷歌Siri等聊天机器人也相继推出。在国内,我们也能看到小度音箱等实用产品。2022年8月,人工智能绘画作品《太空歌剧院》获得了美国科罗拉多州博览会美术竞赛一等奖,让大家对生成式人工智能(AI Generated Content, 简称AIGC)的能力有了新的认识。
那么,ChatGPT为什么突然如此吸引人呢?原因在于,ChatGPT与之前的AI聊天机器人相比更加真实、准确,理解自然语言的能力、生成有效答案的水平都“更上一层楼”,甚至有人觉得ChatGPT模拟人类的精确度令人“害怕”。其实,从上述人工智能的发展历程中不难看出,从最初的聊天机器人鼻祖Eliza, 到微软小冰、谷歌Siri、小度音箱等,再到ChatGPT,这类基于AIGC技术的聊天机器人有一个螺旋式发展的过程。ChatGPT的出现可以说是从量变到质变的必然现象,或者说它的出现只是时间早晚的问题。当然,ChatGPT能够如此成功,在技术方面确实有独到之处,最主要是采用了Transformer结构和“自回归+Prompting”的训练模式,使得自然语言处理研究范式发展为预训练模式,并最终走向通用人工智能模式。Transformer结构的低层和中层存储了词性、句法等知识,中高层则广泛存储抽象语义类、事实概念类知识。其中,模型的总参数量高达1 750亿,使得模型具有能够解锁许多大型语言模型的新能力。ChatGPT模型的训练分为3个阶段:首先,采用带有标准答案的人工标注的高质量问题进行初步训练;随后,标注员对模型生成答案的喜好程度进行排序打分,激励模型学习什么样的回答是真实、无害、有用的;最后,结合强化学习策略进一步训练模型生成高质量答案的能力。这一训练范式增强了语言模型理解人类命令的能力,也正是由于模型具有“善解人意”的关键“技能”,才使得ChatGPT取得了突破性成就。
二、ChatGPT在高等教育领域的价值
其实自人工智能提出以来,人们就一直在努力将其应用到教育中。从20世纪70年代起,随着人工智能领域对专家系统的重视,教育领域的专家系统即智能导师系统(Intelligent Tutoring System, 简称ITS,也常翻译为智能教学系统)开始蓬勃发展,比如用于南美洲地理教学的SCHOLAR,用于物理、数学、编程等教学的AutoTutor, 用于数学、物理等理工科问题解决的Cognitive Tutor系列等。人们希望计算机可以像人类教师一样指导和帮助学生学习。进入21世纪以来,随着人工智能、大数据、学习分析等技术的发展,个性化自适应学习越来越受关注,但其核心仍然是基于人工智能等技术,针对海量的学习行为数据进行分析,从而发现学习者的学习特征,并给予个性化干预。
我们曾经分析过人工智能教育应用的核心价值:在学习层面,主要是实现个性化自适应学习,以更好地培养个性化创新人才。比如可汗学院就推出了数学学习平台,将学生要学的知识精细切割为上百个知识点并可视化为由549个小格组成的“任务进度”图。学习者可以设计个性化的学习路径并自由选择想要学习的知识点,还可以通过练习或测试提升对某一知识点的掌握程度。在教学层面,主要是人机协同打造超级教师,让教师更幸福。人工智能教师可以协助人类教师自动出题,自动批阅作业,自动诊断学生存在的问题,对学生进行个性化的教学指导,对学生的心理和身体健康进行评测,对学生的生涯发展进行规划等。这样,未来的教师在人工智能的支持下就可以变成一天24小时不知疲倦地工作且无所不知、无所不能的“超级教师”。在管理层面,主要是提升管理效率和决策水平,实现看不见的服务和管理。现在教育系统中积累了学生的各种学习、餐饮、上网等数据,对这些数据进行分析能够大大提升工作效率。比如南京理工大学就通过分析学生在食堂的就餐数据,自动甄别出贫困生并直接发放补助。
ChatGPT作为一个优秀的人工智能产品,自然也具备以上教育价值,而且,鉴于其在对话和生成内容方面的突出能力,可能还会有一些特殊的应用。在学习层面,ChatGPT可以采用“苏格拉底教学法”,通过讨论、问答甚至辩论的方式来引导学生学习,而且ChatGPT可以随时随地给予学生必要的反馈和帮助。著名学者梅耶曾经提出过有效开展练习的4条实证原则,其中一条是“即时反馈”,也就是说在学生解答应用题后,教师应该逐步解答此题的各个步骤。但是现实中不是每个学生每时每刻都有一名教师坐在旁边,随时给学生解答,利用ChatGPT或许就可以做到。在教学层面,ChatGPT也可以辅助教师查找资源、生成教案、撰写教材、准备教学课件等。比如教师在备课和写论文时,经常会用到一些图片,过去教师通常会去网上查找,这样一方面可能存在版权问题,另一方面常常找不到合适的图片,而借助ChatGPT或许可以方便地生成更合适的图片。在管理层面,首先,ChatGPT能够帮助管理人员快速完成大量的事务性工作,比如生成通知、规章制度等;其次,ChatGPT还可以被用于管理决策,比如在对应聘教师进行评价时,ChatGPT能进行全方位对比分析,辅助管理者决策。
三、ChatGPT对高等教育的影响和冲击
和人类曾经面对的其他创新技术一样,ChatGPT在促进高等教育发展的同时,当然也会给高等教育带来一定的影响和冲击,具体来说可以分为表层影响和深层影响两类。
表层影响主要是知识生产的变革,典型的例子就是学生利用ChatGPT写作业和研究者利用ChatGPT撰写论文。有调查发现,89%的美国大学生已经在用ChatGPT写作业,甚至有人用ChatGPT写的作业得了最高分,所以现在北美一些高校的教师如临大敌,纷纷宣布禁止学生使用ChatGPT完成作业。另外,现在也有人采用ChatGPT撰写或者辅助撰写论文,甚至将其作为论文作者,所以也有许多期刊宣布不允许使用ChatGPT代写论文,或者不允许将其列为作者。总之,现在高等教育界似乎有一些风声鹤唳、草木皆兵的感觉。
在笔者看来,这个问题只是表层问题,教育界人士大可不必惊慌。对于优秀学生,就算是把ChatGPT放在他们面前,他们可能会利用ChatGPT找到更多参考资料,让自己作业的质量更高,但一般不会直接抄作业。对于一些差生,就算没有ChatGPT,他们一样可以利用搜索引擎、问答软件等抄作业。例如,在中小学领域,拍照解题类软件已经很多,如果学生想抄作业其实不是太难的事情,但是在现实中并没有普遍看到疯狂抄作业的现象。事实上,如果管理和使用得当,ChatGPT可能有助于培养学生提出问题、分析问题和解决问题的能力,从而有助于培养创新人才。
对于借助ChatGPT撰写学术论文,大家更是不必紧张。事实上,撰写学术论文的“初心”就是为了推动研究发展和社会发展。如果ChatGPT能够写出或者辅助写出有利于研究和社会发展的优秀论文,在本质上难道不是好事吗?当然,这背后肯定存在学术规范和伦理道德的问题,需要妥善处理好。其实这也不难,假想ChatGPT是你身边一位无所不知的优秀学者,你是否可以请他帮你找文献、修改文献格式、撰写文献综述、提示撰写思路,甚至帮你写一些内容呢?如果你真的请他做了这些事情,你应该怎样将其贡献体现在论文中呢?想明白这个问题后,ChatGPT的问题可能也就慢慢迎刃而解了。相信只要我们能够构建适应新时代、新技术的学术规范、伦理道德和管理制度,那么以ChatGPT为代表的人工智能技术可能会大大提升学术研究水平。
另外,还有人指出当前ChatGPT可能会提供一些错误的事实性知识这个问题。例如,当我们问ChatGPT“中国足球参加了几次世界杯”,它可能会给出“2次”这个错误答案,需要多次的修正才能够给出正确的回答。ChatGPT会给出错误的答案或者价值观不正确的回答,这可能会为使用者带来一些不必要的干扰和困惑。不过这种事实性知识的错误随着ChatGPT的发展进化会得到不断的修正,最终成为一个近乎精确的知识库。当然,这一点也提醒我们,要培养全民的信息素养和批判性思维,让大家知道ChatGPT也不是绝对正确的。其实,就算是人类最卓越的学者,可能也有错误的时候,所以加快培养信息素养很重要。
以上只是表层影响,真正需要特别关注的是深层影响。深层影响是指以ChatGPT为代表的人工智能可能会对社会各领域带来翻天覆地的影响,社会对人才的需求也会因此发生革命性变化,这样就需要高校在专业设置、课程设置、教学模式等方面进行相应变革。比如工厂流水线上的工作都被机器人替代了,那么以培养这一类人才为目的的职业院校的相关专业就需要调整。如果说之前的人工智能机器人替代的主要是蓝领工作的话,那么ChatGPT替代的可能是一部分属于初级知识方面的工作,比如律师助理、秘书等文字类工作。这个道理并不复杂,但是新技术发展非常快,而教育组织的变革往往很缓慢,中间就会有一些矛盾,所以要处理好这个问题其实很困难。
不过,对于高校教师,肯定不用担心会被机器替代。有学者在2013年做过研究,他们认为,未来20年内,美国大约有47%的岗位会受到自动化的威胁,但是小学教师、中学教师和大学教师被替代的概率仅分别为0.44%、0.78%和0.32%,原因是教师的工作包含了很多富有创造性、社交性和情感性的内容,不容易被人工智能替代。虽然不容易被替代,不过懂得利用人工智能的老师可能会替代不懂得利用人工智能的老师,人机协同应该是未来的发展趋势。比如将ChatGPT恰当应用到教学、科研中的教师可能会取得事半功倍的效果。
相关文章:

ChatGPT与高等教育变革:价值、影响及未来发展
最近一段时间,ChatGPT吸引了社会各界的目光,它可以撰写会议通知、新闻稿、新年贺信,还可以作诗、写文章,甚至可以撰写学术论文。比尔盖茨、马斯克等知名人物纷纷为此发声,谷歌、百度等知名企业纷纷宣布要提供类似产品。…...

Matlab Image Processing toolbox 下载安装方法
当安装好Matlab之后,发现没有Image Processing toolbox这个图像处理工具箱 从新安装一遍, 选上 Image Processing toolbox 但是不用选matlab即可 1.找到之前安装时的Setup安装程序包,按照之前安装Matlab步骤,到选择需要安装的Ma…...
什么是消息键(Key)?如何使用消息键进行消息顺序性保证?
消息键(Key)是Kafka消息的一个可选属性,用于标识消息的逻辑关联关系。每条消息可以携带一个关键字作为其键,这个键可以是字符串、整数等数据类型。 使用消息键可以在Kafka中实现消息的顺序性保证,具体方式如下&#x…...

慎思笃行,兴业致远:金融行业的数据之道
《中庸》中说,“博学之,审问之,慎思之,明辨之,笃行之”。这段话穿越千年,指引着中国千行百业的发展。对于金融行业来说,庞大的数据量可以说是“博学”的来源。但庞大的数据体量,既是…...

Git-分支管理
文章目录 1.分支管理2.合并冲突3.合并模式4.补充 1.分支管理 Git分支管理是指在Git版本控制系统中,使用分支来管理项目的不同开发线路和并行开发的能力。通过分支,开发者可以在独立的环境中进行功能开发、bug修复等工作,而不会影响到主分支上…...

[Ubuntu 22.04] containerd配置HTTP方式拉取私仓Harbor
文章目录 1. 基础环境配置2. Docker安装3. 部署Harbor,HTTP访问4. 部署ContainerD5. 修改docker配置文件,向harbor中推入镜像6. 配置containerd6.1. 拉取镜像验证6.2. 推送镜像验证 1. 基础环境配置 [Ubuntu 22.04] 安装K8S基础环境准备脚本 2. Docker安…...
入门指南:深入解析OpenCV的copyTo函数及其与rect的应用场景
文章目录 导言copyTo函数的示例copyTo函数与rect的应用场景结论 导言 OpenCV是一个功能强大的开源计算机视觉库,广泛应用于图像处理和计算机视觉任务。在OpenCV中,copyTo函数是一个重要的图像处理函数,它允许我们在不同的图像之间复制像素数…...

2018年全国硕士研究生入学统一考试管理类专业学位联考写作试题——解析版
2018年1月真题 四、写作:第56~57小题,共65分。其中论证有效性分析30 分,论说文35分。 56.论证有效性分析: 分析下述论证中存在的缺陷和漏洞,选择若干要点,写一篇600字左右的文章,对该论证的有…...

系统集成|第七章(笔记)
目录 第七章 范围管理7.1 项目范围管理概念7.2 主要过程7.2.1 规划范围管理7.2.2 收集需求7.2.3 定义范围7.2.4 创建工作分解结构 - WBS7.2.5 范围确认7.2.6 范围控制 上篇:第六章、整体管理 第七章 范围管理 7.1 项目范围管理概念 概述:项目范围管理就…...

Qt —— Vs2017编译hiredis源码并测试调用(附调用hiredis库源码)
下载hiredis源码 编译hiredis源码 1、解压下载的hiredis源码包,如图使用Vs2017打开hiredis_win.sln 2、如下两图,Vs2017打开.sln后点击升级。 分别对两个工程的debug、release进行配置。Debug配置为多线程调试DLL(MDd)、Release配置为多线程DLL(/MD),这样做是为了配合被调用…...
深入理解设计模式:设计模式定义、设计原则以及组织编目
文章目录 一、设计模式1.1 设计模式的起源1.2 设计模式的定义1.3 记录要素1.4 合理使用模式 二、设计模式的六大原则2.1 开闭原则(Open-Closed Principle, OCP)2.1.1 定义2.1.2 原则分析2.1.3 开闭原则的意义所在 2.2 单一职责原则(Single Responsibility Principle, SRP)2.4.1…...

鸿鹄协助管理华为云与炎凰Ichiban
炎凰对华为云的需求 在炎凰日常的开发中,对于服务器上的需求,我们基本都是采用云服务。目前我们主要选择的是华为云,华为云的云主机比较稳定,提供的云主机配置也比较多样,非常适合对于不同场景硬件配置的需求ÿ…...

Vite创建Vue+TS项目引入文件路径报错
使用vite搭建vue3脚手架的时候,发现main.ts中引入App.vue编辑器会报错,但是不影响代码运行。 报错信息:TS2307: Cannot find module ‘./App.vue’ or its corresponding type declarations. 翻译过来是找不到模块或者相关的声明类型&#…...

计算机里基本硬件的组成以及硬件协同
文章目录 冯诺依曼体系输入设备输出设备存储器运算器控制器协同工作的流程 冯诺依曼体系 世界上第一台通用计算机,ENIAC,于1946年诞生于美国一所大学。 ENIAC研发的前期,需要工作人员根据提前设计好的指令手动接线,以这种方式输入…...

2023软件设计师中级备考经验分享(文中有资料链接分享)
先摊结论吧,软考中级设计师备考只是备考半个月(期间还摆烂了几天),然而成绩如下: 我自己都没想到会这么好的成绩。。。 上午题:推荐把软考通APP里的历年真题刷3-4遍,直接刷真题,然后…...

Windows 10 中无法最大化任务栏中的程序
方法1:仅选择选项 PC 屏幕 如果您使用双显示器,有时这可能会发生在您的 1 台计算机已插入但您正在访问的应用程序正在另一台计算机上运行的情况下,因此您看不到任何选项。因此,请设置仅在主计算机上显示显示的 PC 屏幕选项。 第…...

【iOS】KVOKVC原理
1 KVO 键值监听 1.1 KVO简介 KVO的全称是Key-Value Observing,俗称"键值监听",可以用于监听摸个对象属性值得改变。 KVO一般通过以下三个步骤使用: // 1. 添加监听 [self.student1 addObserver:self forKeyPath:"age"…...

当机器人变硬核:探索深度学习中的时间序列预测
收藏自:Wed, 15 Sep 2021 10:32:56 UTC 摘要:时间序列预测是机器学习和深度学习领域的一个重要应用,它可以用于预测未来趋势、分析数据模式和做出决策。本文将介绍一些基本概念和常用方法,并结合具体的案例,展示如何使…...

C# Solidworks二次开发:自动创建虚拟零件及使用注意事项
今天要讲的是关于在solidworks中如何自动创建虚拟零件的功能,也就是solidworks中插入新零件这个功能。 实现这个功能需要使用的API如下所示: InsertNewVirtualPart(swFaceOrPlane1, out swcomp2); 其中这个方法中使…...
vim工具 windows系统使用
vim常用命令: 编辑–>输入: i: 在当前光标所在字符的前面,转为输入模式; 粘贴命令 p p: 如果删除或复制为整行内容,则粘贴至光标所在行的下方,如果复制或删除的内容为非整行,则粘贴至光标所…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...