当前位置: 首页 > news >正文

区间dp,合并石子模板题

设有 N 堆石子排成一排,其编号为 1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有 44 堆石子分别为 1 3 5 2, 我们可以先合并 1、2堆,代价为 44,得到 4 5 2, 又合并 1、2堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为 4+9+11=24;

如果第二步是先合并 2、3堆,则代价为 7,得到 4 7,最后一次合并代价为 11,总代价为 4+7+11=22

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入格式

第一行一个数 N 表示石子的堆数 N。

第二行 N 个数,表示每堆石子的质量(均不超过 1000)。

输出格式

输出一个整数,表示最小代价。

数据范围

1≤N≤300

输入样例:

4
1 3 5 2

输出样例:

22
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;
typedef long long LL;
const int N = 300 + 5;
const int INF = 1e9;
int n;
int sum[N], dp[N][N];int main() {cin >> n;for (int i = 1; i <= n; i++) {scanf("%d", &sum[i]);sum[i] += sum[i - 1];}for (int len = 2; len <= n; len++) {for (int l = 1; l + len - 1 <= n; l++) {int r = len + l - 1;dp[l][r] = INF;for (int k = l; k < r; k++) {dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r] + sum[r] - sum[l - 1]);}}}cout << dp[1][n] << endl;return 0;
}

代码2

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;
typedef long long LL;
const int N = 300 + 5;
const int INF = 1e9;
int n;
LL sum[N], dp[N][N];int main() {cin >> n;for (int i = 1; i <= n; i++) {scanf("%ld", &sum[i]);sum[i] += sum[i - 1];}for (int i = n; i >= 1; i--) {for (int j = i + 1; j <= n; j++) {dp[i][j] = INF;for (int k = i; k < j; k++) {dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1]);}}}cout << dp[1][n] << endl;return 0;
}

 

相关文章:

区间dp,合并石子模板题

设有 N 堆石子排成一排&#xff0c;其编号为 1,2,3,…,N。 每堆石子有一定的质量&#xff0c;可以用一个整数来描述&#xff0c;现在要将这 N 堆石子合并成为一堆。 每次只能合并相邻的两堆&#xff0c;合并的代价为这两堆石子的质量之和&#xff0c;合并后与这两堆石子相邻的…...

C++代码格式化工具clang-format详细介绍

文章目录 clang-format思考代码风格指南生成您的配置运行 clang-format禁用一段代码的格式设置clang-format的设置预览 clang-format 我曾在许多编程团队工作过&#xff0c;这些团队名义上都有“编程风格指南”。该指南经常被写下来并放置在开发人员很少查看的地方。几乎在每种…...

CentOS 7安装PostgreSQL 15版本数据库

目录 一、何为PostgreSQL&#xff1f; 二、PostgreSQL安装 2.1安装依赖 2.2 执行安装 2.3 数据库初始化 2.4 配置环境变量 2.5 创建数据库 2.6 配置远程 2.7 测试远程 三、常用命令 四、用户创建和数据库权限 一、何为PostgreSQL&#xff1f; PostgreSQL是以加州大学…...

QGraphicsView实现简易地图2『瓦片经纬度』

前文链接&#xff1a;QGraphicsView实现简易地图1『加载离线瓦片地图』 地图采用GCJ02 Web 墨卡托投影&#xff0c;最小坐标&#xff1a;(-180.00000000000000,-85.05112877980655)&#xff0c;最大坐标&#xff1a;(180.00000000000000,85.05112877980655)。瓦片地图单张图片像…...

医学图像重建—第一章笔记

序言 本书涵盖内容&#xff1a; 2D parallel beam imaging 2D fan beam imaging 3D parallel ray imaging 3D parallel plane imaging 3D cone beam imaging 算法包括&#xff1a;analytical method&#xff0c;iterative method 应用于&#xff1a; X-ray CT single photon…...

python-pytorch基础之神经网络分类

这里写目录标题 生成数据函数定义数据集定义loader加载数据定义神经网络模型测试输出是否为2个输入数据&#xff0c;输出结果 训练模型函数计算正确率 训练数据并保存模型测试模型准备数据加载模型预测对比结果 生成数据函数 import randomdef get_rectangle():widthrandom.ra…...

【C++ 程序设计】实战:C++ 变量实践练习题

目录 01. 变量&#xff1a;定义 02. 变量&#xff1a;初始化 03. 变量&#xff1a;参数传递 04. 变量&#xff1a;格式说明符 ① 占位符 “%d” 改为格式说明符 “%llu” ② 占位符 “%d” 改为格式说明符 “%f” 或 “%e” 05. 变量&#xff1a;字节数统计 06. 变量&a…...

微软对Visual Studio 17.7 Preview 4进行版本更新,新插件管理器亮相

近期微软发布了Visual Studio 17.7 Preview 4版本&#xff0c;而在这个版本当中&#xff0c;全新设计的扩展插件管理器将亮相&#xff0c;并且可以让用户可更简单地安装和管理扩展插件。 据了解&#xff0c;目前用户可以从 Visual Studio Marketplace 下载各式各样的 VS 扩展插…...

Kafka 入门到起飞 - Kafka怎么做到保障消息不会重复消费的? 消费者组是什么?

Kafka怎么做到避免消息重复消费的&#xff1f; 消费者组是什么&#xff1f; 消费者&#xff1a; 1、订阅Topic&#xff08;主题&#xff09; 2、从订阅的Topic消费&#xff08;pull&#xff09;消息&#xff0c; 3、将消费消息的offset&#xff08;偏移量&#xff09;保存在K…...

MongoDB 的增、查、改、删

Monogo使用 增 单条增加 db.member.insertOne({"name":"张三","age":18,"create":new Date()}) db.member.insert({"name":"李四1","age":18,"create":new Date()}) db.member.insertOne(…...

mysql常用操作命令

mysql常用操作命令 mysql:单进程多线程模型,一个SQL语句无法利用多个cpu core 一:基本命令 0.查看当前连接数 show global status like Thread$; show variables like "%timeout%"; show variables like "log_%";1.查看当前连接状态 show processlist…...

数学建模常见模型汇总

优化问题 线性规划、半定规划、几何规划、非线性规划、整数规划、多目标规划(分层序列法)、动态规划、存贮论、代理模型、响应面分析法、列生成算法 预测模型 微分方程、小波分析、回归分析、灰色预测、马尔可夫预测、时间序列分析(AR MAMA.RMA ARTMA LSTM神经网络)、混沌模…...

C#使用LINQ查询操作符实例代码(二)

目录 六、连表操作符 1、内连接2、左外连接(DefaultIfEmpty)3、组连接七、集合操作 八、分区操作符 1、Take()&#xff1a;2、TakeWhile()&#xff1a;3、Skip()&#xff1a;4、SkipWhile()&#xff1a;九、聚合操作符 1、Count&#xff1a; 返回集合项数。 2、LongCount&…...

jenkinsfile小试牛刀

序 本文主要演示一下如何用jenkinsfile来编译java服务 安装jenkins 这里使用docker来安装jenkins docker run --name jenkins-docker \ --volume $HOME/jenkins_home:/var/jenkins_home \ -p 8080:8080 jenkins/jenkins:2.416之后访问http://${yourip}:8080&#xff0c;然后…...

C++ xmake构建

文章目录 一、xmake.lua二、xmake常用语句 一、xmake.lua --xmake.luaset_project("XXX")add_rules("mode.debug", "mode.release") set_config("arch", "x64")if is_plat("windows") then -- the release modei…...

推荐带500创作模型的付费创作V2.1.0独立版系统源码

ChatGPT 付费创作系统 V2.1.0 提供最新的对应版本小程序端&#xff0c;上一版本增加了 PC 端绘画功能&#xff0c; 绘画功能采用其他绘画接口 – 意间 AI&#xff0c;本版新增了百度文心一言接口。 后台一些小细节的优化及一些小 BUG 的处理&#xff0c;前端进行了些小细节优…...

wps图表怎么改横纵坐标,MLP 多层感知器和CNN卷积神经网络区别

目录 wps表格横纵坐标轴怎么设置&#xff1f; MLP (Multilayer Perceptron) 多层感知器 CNN (Convolutional Neural Network) 卷积神经网络 多层感知器MLP&#xff0c;全连接网络&#xff0c;DNN三者的关系 wps表格横纵坐标轴怎么设置&#xff1f; 1、打开表格点击图的右侧…...

rdb和aof

RDB持久化&#xff1a;原理是将Redis在内存中的数据库记录定时dump到磁盘上的RDB持久化AOF持久化&#xff1a;原理是将Redis的操作日志以追加的方式写入文件 rdb&#xff1a; 开启方式&#xff1a;客户端可以通过向Redis服务器发送save或bgsave命令让服务器生成rdb文件&#…...

TCP网络通信编程之网络上传文件

【图片】 【思路解析】 【客户端代码】 import java.io.*; import java.net.InetAddress; import java.net.Socket; import java.net.UnknownHostException;/*** ProjectName: Study* FileName: TCPFileUploadClient* author:HWJ* Data: 2023/7/29 18:44*/ public class TCPFil…...

Java中对Redis的常用操作

目录 数据类型五种常用数据类型介绍各种数据类型特点 常用命令字符串操作命令哈希操作命令列表操作命令集合操作命令有序集合操作命令通用命令 在Java中操作RedisRedis的Java客户端Spring Data Redis使用方式介绍环境搭建配置Redis数据源编写配置类&#xff0c;创建RedisTempla…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...

从零开始了解数据采集(二十八)——制造业数字孪生

近年来&#xff0c;我国的工业领域正经历一场前所未有的数字化变革&#xff0c;从“双碳目标”到工业互联网平台的推广&#xff0c;国家政策和市场需求共同推动了制造业的升级。在这场变革中&#xff0c;数字孪生技术成为备受关注的关键工具&#xff0c;它不仅让企业“看见”设…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...

【阅读笔记】MemOS: 大语言模型内存增强生成操作系统

核心速览 研究背景 ​​研究问题​​&#xff1a;这篇文章要解决的问题是当前大型语言模型&#xff08;LLMs&#xff09;在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色&#xff0c;但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成&#xff08;RA…...