机器学习深度学习——图像分类数据集
👨🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——softmax回归(下)
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助
我们使用Fashion-MNIST数据集,来作为我们的图像分类数据集。
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2ld2l.use_svg_display() # 使用svg来显示图片,清晰度会更高一些
图像分类数据集
- 读取数据集
- 读取小批量
- 整合所有组件
读取数据集
可以通过框架内的内置函数将数据集下载并读取到内存中。
# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间(归一化)
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(root="D:/Python/pytorch/data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="D:/Python/pytorch/data", train=False, transform=trans, download=True)
运行了好一会:


Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集中的6000张图像 和测试数据集中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。
print(len(mnist_train), len(mnist_test))
输出:
60000 10000
每个输入图像的高度和宽度都为28像素。数据集由灰度图像组成,其通道数为1。
print(mnist_train[0][0].shape)
输出:
torch.Size([1, 28, 28])
为方便,之后的图像的形状都记为h×w。
Fashion-MNIST中包含的10个类别,包括T恤、裤子、外套等等。下面函数将会用于在数字标签索引及其文本名称之间进行转换。
def get_fashion_mnist_labels(labels): #@save"""返回Fashion-MNIST数据集的文本标签"""text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat','sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']return [text_labels[int(i)] for i in labels]
现在可以创建一个函数来可视化这些样本:
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save"""绘制图像列表"""figsize = (num_cols * scale, num_rows * scale)_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)axes = axes.flatten()for i, (ax, img) in enumerate(zip(axes, imgs)):if torch.is_tensor(img):# 图片张量ax.imshow(img.numpy())else:# PIL图片ax.imshow(img)ax.axes.get_xaxis().set_visible(False)ax.axes.get_yaxis().set_visible(False)if titles:ax.set_title(titles[i])return axesX, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y))
d2l.plt.show()

读取小批量
为了使我们在读取训练集和测试集时更容易,我们使用内置的数据迭代器,而不是从0开始创建。在每次迭代时,数据加载起每次都会读取一小批量的数据,大小为batch_size。通过内置数据迭代器,我们可以随机打乱所有样本,从而无偏见地读取小批量。
batch_size = 256def get_dataloader_workers(): #@save"""使用4个进程来读取数据"""return 4train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers())
整合所有组件
先定义load_data_fashion_mnist函数,用于获取和读取Fashion-MNIST数据集。这个函数返回训练集和验证集的数据迭代器。此外,这个函数还接受一个可选参数resize,用来将图像大小调整为另一种形状。
def load_data_fashion_mnist(batch_size, resize=None): #@save"""下载Fashion-MNIST数据集,然后将其加载到内存中"""trans = [transforms.ToTensor()]if resize:trans.insert(0, transforms.Resize(resize))trans = transforms.Compose(trans)mnist_train = torchvision.datasets.FashionMNIST(root="D:/Python/pytorch/data", train=True, transform=trans, download=True)mnist_test = torchvision.datasets.FashionMNIST(root="D:/Python/pytorch/data", train=False, transform=trans, download=True)return (data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers()),data.DataLoader(mnist_test, batch_size, shuffle=False,num_workers=get_dataloader_workers()))
相关文章:
机器学习深度学习——图像分类数据集
👨🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——softmax回归(下) 📚订阅专栏:机器学习&&深度学习…...
【PWN · 栈迁移】[BUUCTF]ciscn_2019_es_2
第一道栈迁移题目,跌跌撞撞理解了 前言 当前溢出可用空间比较少时(极端情况下仅能覆写ebp和ret),可以通过栈迁移的方式,扩大shellcode的容纳空间,其核心是将esp移动到一段shellocode开头。而esp总是由ebp赋…...
网络编程(13): 网络通信常用命令(后续待补充)
ifconfig 一般用于查看网卡信息 ping 一般用于侦测本机到目标网络主机的网络是否通常: ping ip/域名 telnet 可以用于指定ip地址和端口的侦听服务是否存在:telnet ip port, 也可以模拟客户端给服务器发数据 netstat 用于查看网络连接状态 -a: 显示所有选项 -t&#…...
flask创建数据库连接池
flask创建数据库连接池 在Python中,您可以使用 Flask-SQLAlchemy 这个扩展来创建一个数据库连接池。Flask-SQLAlchemy 是一个用于 Flask 框架的 SQLAlchemy 操作封装,实现了 ORM(Object Relational Mapper)。ORM 主要用于将类与数据库中的表建立映射关系…...
C语言手撕顺序表
目录 一、概念 1、静态顺序表:使用定长数组存储元素。 2、动态顺序表:使用动态开辟的数组存储 二、接口实现 1、对顺序表的初始化 2、对数据的销毁 3、对数据的打印 4、检查是否需要扩容 5、尾插 6、头插 7、尾删 8、头删 9、在pos位置插入x …...
常见的排序算法
常见的排序算法 常见的排序算法包括: 冒泡排序(Bubble Sort):依次比较相邻的元素,将较大的元素交换到右侧,逐步将最大元素移动到末尾。插入排序(Insertion Sort):将数组…...
C#如何使用SQLite数据库?
文章目录 0.引言1.SQLite工具准备2.创建窗体项目并添加SQLite的命名空间3.编写使用SQLite代码4.结果展示 0.引言 SQLite是一个轻量级的嵌入式数据库,它的库文件非常小巧,不需要独立的服务器进程或配置。这使得它非常适合在资源受限的环境中使用ÿ…...
如何将表格中的状态数据转换为Tag标签显示
考虑到系统前端页面的美观程度,通常通过Tag标签来代替某条数据中的状态信息。仅通过一点操作,便能够使得页面美观程度得到较大提升,前后对比如下所示。代码基于Vue以及Element-ui组件实现。 修改前: 修改后: 修改前…...
centos中修改防火墙端口开放配置
1、直接进入文件修改 vim /etc/sysconfig/iptables 2、添加需要开放的端口 (1)添加需要开放的单个端口 4001 -A INPUT -m state --state NEW -m tcp -p tcp --dport 4001 -j ACCEPT (2)添加需要开放的某个网段端口 4001:4020 …...
程序设计 算法基础
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心&…...
【数据结构】之十分好用的“链表”赶紧学起来!(第一部分单向链表)
💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …...
ubuntu开机自启动
ubuntu开机自启动 1、建一个test.sh脚本,并写入 #!/bin/sh gnome-terminal -x bash -c ‘cd /home/文件路径/;python3 main.py’ exit 0 2、:wq!保存 3、创建rc-local.service文件(sudo vim /etc/systemd/system/rc-local.service)…...
Git将其他分支合并至主分支
主要思想: 把分支代码合并到master,合给谁,就先切换到谁的分支 1. 当前分支是dev,开发完成后,需要合并到master分支 先把该提交的提交,需要push的push完成后,再切换分支。 否则也会告诉你要提交…...
Python+request+pytest 接口自动化测试框架入门(与unittest的比较)
1. Pythonrequestpytest 接口自动化测试框架入门 - 简书 pytest和unittest的比较: pytest是一个非常成熟的全功能的Python测试框架,主要有以下几个特点: 简单灵活,容易上手支持参数化能够支持简单的单元测试和复杂的功能测试&a…...
数据结构——复杂度
总有一天你要一个人,再暗夜中,向那座桥走过去 文章目录 一、算法的复杂度 考察形式范例 二、算法的时间复杂度 大O的渐进表示法 常见的复杂度对比 例题:消失的数字 题目的三种思路 1.排序遍历 2.减法 3.单身狗思想 三、空间复杂度…...
使用goldengate 迁移Oracle到postgresql
环境: --源端: IP:10.0.4.16 hostname:tencent Oracle数据库版本:12.2.0.1.0 ogg for oracle版本:19.1.0.0.4 SID:orcl --目标端: IP:10.0.4.16 hostname&#…...
ESP-C3入门20. CentOS开发环境及Jenkins流水线
一、准备环境 CentOS8已经正常安装Jenkins 二、升级 cmake cmake 升到 3.16以上。 cmake --version # 安装 g sudo yum install gcc-c export CXXg# 安装 CMake 的依赖项 sudo yum install -y openssl-devel# 下载 CMake 源码并进行编译安装 wget https://github.com/Kitwa…...
服务器被爬虫恶意攻击怎么办?
在有预算的情况可以采购第三方服务防火墙,没钱就使用开源的WAF进行防护。 # WAF防火墙的基本防护原理 WAF(Web 应用防火墙)可以使用多种技术来防止恶意爬虫攻击,例如: 1. 黑名单:WAF 可以使用黑名单技术来…...
JavaScript正则表达式之座机号/手机号验证校验规则
引用:https://www.bilibili.com/read/cv18300539/ 本文对利用正则表达式对手机号码进行了验证 支持格式: 座机 :xxx-xxxxxxxx、xxxxxxxxxxxx …座机区号的横杠可有可无 手机:xxxxxxxxxxx JavaScript: var: checkPhone (rule,…...
黑客学习手册(自学网络安全)
一、首先,什么是黑客? 黑客泛指IT技术主攻渗透窃取攻击技术的电脑高手,现阶段黑客所需要掌握的远远不止这些。 二、为什么要学习黑客技术? 其实,网络信息空间安全已经成为海陆空之外的第四大战场,除了国…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...
node.js的初步学习
那什么是node.js呢? 和JavaScript又是什么关系呢? node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说, 需要在node.js的环境上进行当JavaScript作为前端开发语言来说,需要在浏览器的环境上进行 Node.js 可…...
