当前位置: 首页 > news >正文

linux -网络编程-多线程并发服务器

目录

1.三次握手和四次挥手

2 滑动窗口

3 函数封装思想

4 高并发服务器

学习目标:

  • 掌握三次握手建立连接过程
  • 掌握四次握手关闭连接的过程
  • 掌握滑动窗口的概念
  • 掌握错误处理函数封装
  • 实现多进程并发服务器
  • 实现多线程并发服务器

1.三次握手和四次挥手

思考: 为什么TCP是面向连接的安全可靠的传输????

TCP是面向连接的安全的数据传输, 在客户端与服务端建立建立的时候要经过三次握手的过程, 在客户端与服务端断开连接的时候要经历四次挥手的过程, 下图是客户端与服务端三次握手建立连接, 数据传输和断开连接四次挥手的全过程.

TCP时序:

说明讲义中图的含义.

SYN: 表示请求, ACK:表示确认

服务端发送的SYN和客户端发送的SYN本身也会占1位.

单独讲解三次握手过程, 以图解形式说明.

上图中ACK表示确认序号, 确认序号的值是对方发送的序号值+数据的长度, 特别注意的是SYN和FIN本身也会占用一位.

注: SYS----->synchronous

      ACK----->acknowledgement

       FIN------>finish

三次握手和四次挥手的过程都是在内核实现的.

下图是TCP数据报格式

 窗口大小: 指的是缓冲区大小

通信的时候不再需要SYN标识位了, 只有在请求连接的时候需要SYN标识位.

传输数据的时候的随机序号seq就是最近一次对方发送给自己的ACK的随机序号值, 而发给对方的ACK就是上次刚刚发给对方的ACK的值.

图中发送的ACK确认包表示给对方发送数据的一个确认, 表示你发送的数据我都收到了, 同时告诉对方下次发送该序号开始的数据.

由于每次发送数据都会收到对方发来的确认包, 所以可以确认对方是否收到了, 若没有收到对方发来的确认包, 则会进行重发.

mss: 最大报文长度, 告诉对方我这边最多一次能收多少, 你不能超过这个长度.

win: 表示告诉对方我这边缓存大小最大是多少.

2 滑动窗口

主要作用: 滑动窗口主要是进行流量控制的.

见下图:如果发送端发送的速度较快,接收端接收到数据后处理的速度较慢,而接收缓冲区的大小是固定的,就会导致接收缓冲区满而丢失数据。TCP协议通过“滑动窗口(Sliding Window)”机制解决这一问题。

详细说明参考讲义

图中win表示告诉对方我这边缓冲区大小是多少, mss表示告诉对方我这边最多一次可以接收多少数据, 你最好不要超过这个长度.

在客户端给服务端发包的时候, 不一定是非要等到服务端返回响应包, 由于客户端知道服务端的窗口大小, 所以可以持续多次发送, 当发送数据达到对方窗口大小了就不再发送, 需要等到对方进行处理, 对方处理之后可继续发送.

mss和MTU

MTU: 最大传输单元

MTU:通信术语最大传输单元(Maximum Transmission Unit,MTU)

是指一种通信协议的某一层上面所能通过的最大数据包大小(以字节为 单位). 最大传输单元这个参数通常与通信接口有关(网络接口卡、串 口等), 这个值如果设置为太大会导致丢包重传的时候重传的数据量较大, 图中的最大值是1500, 其实是一个经验值.

mss: 最大报文长度, 只是在建立连接的时候, 告诉对方我最大能够接收多少 数据, 在数据通信的过程中就没有mss了. 

3 函数封装思想

函数封装的思想-处理异常情况

结合man-page和errno进行封装.

在封装的时候起名可以把第一个函数名的字母大写, 如socket可以封装成Socket, 这样可以按shift+k进行搜索, shift+k搜索函数说明的时候不区分大小写, 使用man page也可以查看, man page对大小写不区分.

像accept,read这样的能够引起阻塞的函数,若被信号打断,由于信号的优先级较高, 会优先处理信号, 信号处理完成后,会使accept或者read解除阻塞, 然后返回, 此时返回值为 -1,设置errno=EINTR;

errno=ECONNABORTED表示连接被打断,异常.

errno宏:

在/usr/include/asm-generic/errno.h文件中包含了errno所有的宏和对应的错误描述信息.

warp.h

#ifndef __WRAP_H_
#define __WRAP_H_
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <strings.h>void perr_exit(const char *s);
int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr);
int Bind(int fd, const struct sockaddr *sa, socklen_t salen);
int Connect(int fd, const struct sockaddr *sa, socklen_t salen);
int Listen(int fd, int backlog);
int Socket(int family, int type, int protocol);
ssize_t Read(int fd, void *ptr, size_t nbytes);
ssize_t Write(int fd, const void *ptr, size_t nbytes);
int Close(int fd);
ssize_t Readn(int fd, void *vptr, size_t n);
ssize_t Writen(int fd, const void *vptr, size_t n);
ssize_t my_read(int fd, char *ptr);
ssize_t Readline(int fd, void *vptr, size_t maxlen);
int tcp4bind(short port,const char *IP);
#endif

warp.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <strings.h>
//绑定错误显示和退出
void perr_exit(const char *s)
{perror(s);exit(-1);
}int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr)
{int n;again:if ((n = accept(fd, sa, salenptr)) < 0) {if ((errno == ECONNABORTED) || (errno == EINTR))//ECONNABORTED 代表连接失败 ETINTR 代表被信号打断goto again;elseperr_exit("accept error");}return n;
}int Bind(int fd, const struct sockaddr *sa, socklen_t salen)
{int n;if ((n = bind(fd, sa, salen)) < 0)perr_exit("bind error");return n;
}int Connect(int fd, const struct sockaddr *sa, socklen_t salen)
{int n;if ((n = connect(fd, sa, salen)) < 0)perr_exit("connect error");return n;
}int Listen(int fd, int backlog)
{int n;if ((n = listen(fd, backlog)) < 0)perr_exit("listen error");return n;
}int Socket(int family, int type, int protocol)
{int n;if ((n = socket(family, type, protocol)) < 0)perr_exit("socket error");return n;
}ssize_t Read(int fd, void *ptr, size_t nbytes)
{ssize_t n;again:if ( (n = read(fd, ptr, nbytes)) == -1) {if (errno == EINTR)//被信号打断应该继续读goto again;elsereturn -1;}return n;
}ssize_t Write(int fd, const void *ptr, size_t nbytes)
{ssize_t n;again:if ( (n = write(fd, ptr, nbytes)) == -1) {if (errno == EINTR)goto again;elsereturn -1;}return n;
}int Close(int fd)
{int n;if ((n = close(fd)) == -1)perr_exit("close error");return n;
}/*参三: 应该读取的字节数*/
ssize_t Readn(int fd, void *vptr, size_t n)
{size_t  nleft;              //usigned int 剩余未读取的字节数ssize_t nread;              //int 实际读到的字节数char   *ptr;ptr = vptr;nleft = n;while (nleft > 0) {if ((nread = read(fd, ptr, nleft)) < 0) {if (errno == EINTR)nread = 0;elsereturn -1;} else if (nread == 0)break;nleft -= nread;//防止一次数据没有读完ptr += nread;//指针需要向后移动}return n - nleft;
}ssize_t Writen(int fd, const void *vptr, size_t n)
{size_t nleft;ssize_t nwritten;const char *ptr;ptr = vptr;nleft = n;while (nleft > 0) {if ( (nwritten = write(fd, ptr, nleft)) <= 0) {if (nwritten < 0 && errno == EINTR)nwritten = 0;elsereturn -1;}nleft -= nwritten;ptr += nwritten;}return n;
}static ssize_t my_read(int fd, char *ptr)
{static int read_cnt;static char *read_ptr;static char read_buf[100];//定义了100的缓冲区if (read_cnt <= 0) {
again://使用缓冲区可以避免多次从底层缓冲读取数据--为了提高效率if ( (read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0) {if (errno == EINTR)goto again;return -1;} else if (read_cnt == 0)return 0;read_ptr = read_buf;}read_cnt--;*ptr = *read_ptr++;//从缓冲区取数据return 1;
}
//读取一行
ssize_t Readline(int fd, void *vptr, size_t maxlen)
{ssize_t n, rc;char    c, *ptr;ptr = vptr;for (n = 1; n < maxlen; n++) {if ( (rc = my_read(fd, &c)) == 1) {*ptr++ = c;if (c  == '\n')//代表任务完成break;} else if (rc == 0) {//对端关闭*ptr = 0;//0 = '\0'return n - 1;} elsereturn -1;}*ptr  = 0;return n;
}int tcp4bind(short port,const char *IP)
{struct sockaddr_in serv_addr;int lfd = Socket(AF_INET,SOCK_STREAM,0);bzero(&serv_addr,sizeof(serv_addr));//清空serv_addr地址 对比 memset()if(IP == NULL){//如果这样使用 0.0.0.0,任意ip将可以连接serv_addr.sin_addr.s_addr = INADDR_ANY;}else{if(inet_pton(AF_INET,IP,&serv_addr.sin_addr.s_addr) <= 0){perror(IP);//转换失败exit(1);}}serv_addr.sin_family = AF_INET;serv_addr.sin_port   = htons(port);int opt = 1;setsockopt(lfd,SOL_SOCKET,SO_REUSEADDR,&opt,sizeof(opt));Bind(lfd,(struct sockaddr *)&serv_addr,sizeof(serv_addr));return lfd;
}

粘包的概念

粘包: 多次数据发送, 收尾相连, 接收端接收的时候不能正确区分第一次发 送多少, 第二次发送多少.

粘包问题分析和解决??

方案1: 包头+数据

如4位的数据长度+数据  -----------> 00101234567890

其中0010表示数据长度, 1234567890表示10个字节长度的数据.

另外, 发送端和接收端可以协商更为复杂的报文结构, 这个报文结 构就相当于双方约定的一个协议.

方案2: 添加结尾标记.

如结尾最后一个字符为\n \$等.

方案3: 数据包定长
如发送方和接收方约定, 每次只发送128个字节的内容, 接收方接收定 长128个字节就可以了.

wrap.c代码解读和分析.

要求能看懂代码, 会使用即可.

4 高并发服务器

如何支持多个客户端---支持多并发的服务器

由于accept和read函数都会阻塞, 如当read的时候, 不能调用accept接受新的连接, 当accept阻塞等待的时候不能read读数据.

第一种方案: 使用多进程, 可以让父进程接受新连接, 让子进程处理与客户端通信

思路: 让父进程accept接受新连接, 然后fork子进程, 让子进程处理通信, 子进程处理完成后退出, 父进程使用SIGCHLD信号回收子进程.

代码实现:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <string.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include "warp.h"int main()
{// 创建socketint lfd = Socket(AF_INET, SOCK_STREAM, 0);// 绑定struct sockaddr_in serv;bzero(&serv, sizeof(serv));serv.sin_family = AF_INET;serv.sin_port =htons(8888);serv.sin_addr.s_addr = htonl(INADDR_ANY);Bind(lfd, (struct sockaddr *)&serv, sizeof(serv));pid_t pid;// 设置g监听Listen(lfd, 128);int cfd;struct sockaddr_in client;socklen_t len;char sIP[16];while (1){len=sizeof(client);memset(sIP,0x00,sizeof(sIP));// 接受新的连接,创建一个新的子进程,g让子进程完成数据的收发的工作cfd = Accept(lfd, (struct sockaddr *)&client, &len);//打印客户端的ip地址printf("client:[%s],[%d]\n",inet_ntop(AF_INET,&client.sin_addr.s_addr,sIP,sizeof(sIP)),ntohs(client.sin_port));pid = fork();if (pid < 0){perror("fork error");exit(-1);}// 父进程else if (pid > 0){// 关闭g通信文件描述符cfdclose(cfd);}// 子进程  --收发数据else if (pid == 0){// 关闭监听文件描述符号close(lfd);int n;int i = 0;char buf[1024];while (1){// 读数据n = Read(cfd, buf, sizeof(buf));if (n <= 0){printf("read error or client closed,n==[%d]\n", n);break;}//将收到的数据再服务端显示出来printf("[%d] -->  n==[%d],buf==[%s]\n",ntohs(client.sin_port),n,buf);// 将小写转换为大写 之后再发送给客户端for (i = 0; i < n; i++){buf[i] = toupper(buf[i]);}// 发送数据Write(cfd, buf, n);}close(cfd);// 停止,n不让子进程继续创建exit(0);}}// 关闭监听文件描述符close(lfd);return 0;//note ::父子进程可以共享的内容有哪些 /*文件描述符(子进程是复制父进程的文件描述符)mmap 共享映射区*/
}

第二种方案: 使用多线程, 让主线程接受新连接, 让子线程处理与客户端通信; 使用多线程要将线程设置为分离属性, 让线程在退出之后自己回收资源.

#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<unistd.h>
#include <sys/types.h>
#include<string.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include<ctype.h>
#include<pthread.h>
#include "warp.h"//子线程回调函数
void *thread_work(void * arg){int cfd=*(int *)arg;int n;int i;char buf[1024];while(1){//read 数据memset(buf,0x00,sizeof(buf));n=Read(cfd,buf,sizeof(buf));if(n<=0){printf("read error or client close,n==[%d]\n",n);break;}printf("n==[%d],buf==[%s]\n",n,buf);//将数据转换成大写再发送给客户端。for(i=0;i<n;i++){buf[i]=toupper(buf[i]);}//发送数据// printf("in");Write(cfd,buf,n);}//关闭通信文件描述符close(cfd);pthread_exit(NULL);}/*\ 续航符
*/int main()
{//创建socketint lfd=Socket(AF_INET,SOCK_STREAM,0);//设置端口复用 int opt=1;setsockopt(lfd,SOL_SOCKET,SO_REUSEADDR,&opt,sizeof(int));struct sockaddr_in serv;bzero(&serv,sizeof(serv));serv.sin_family=AF_INET;serv.sin_port=htons(8888);serv.sin_addr.s_addr=htonl(INADDR_ANY);Bind(lfd,(struct sockaddr *)&serv,sizeof(serv));//设置监听Listen(lfd,128);int cfd;pthread_t threadID;while (1){//接受新的连接cfd=Accept(lfd,NULL,NULL);//创建子线程pthread_create(&threadID,NULL,thread_work,&cfd);//i设置子线程为分离属性pthread_detach(threadID);}//关闭i监听i文件描述符close(lfd);return 0;
}/*1.子线程可以关闭监听文件描述符吗?原因是lfd 子线程和主线程共享文件描述符,而不是复制的。2.主线程不能 不能关闭cfd.原因是主线程和子线程共享一个cfd,close() 之后就会被真的关闭,他俩共享一个cfd 不是复制的cfd.3.多个子线程可以共享cfd 嘛?会发生什么问题。一个i·最后一个线程cfd 覆盖了之前的内容 struct INFO{int cfd;pthread_t threadID;struct sockaddr_in client;}struct INFO info[100];
*/
//多线程可以共享哪些东西

思考: 如何不使用多进程或者多线程完成多个客户端的连接请求

可以将accept和read函数设置为非阻塞, 调用fcntl函数可以将文件描述符设置为非阻塞, 让后再while循环中忙轮询.

相关文章:

linux -网络编程-多线程并发服务器

目录 1.三次握手和四次挥手 2 滑动窗口 3 函数封装思想 4 高并发服务器 学习目标&#xff1a; 掌握三次握手建立连接过程掌握四次握手关闭连接的过程掌握滑动窗口的概念掌握错误处理函数封装实现多进程并发服务器实现多线程并发服务器 1.三次握手和四次挥手 思考: 为什么…...

Golang之路---02 基础语法——字典

字典 字典&#xff08;Map 类型&#xff09;&#xff0c;是由若干个 key:value 这样的键值对映射组合在一起的数据结构。 key 不能是切片&#xff0c;不能是字典&#xff0c;不能是函数。 字典初始化 方式&#xff1a;map[KEY_TYPE]VALUE_TYPE //1.var map1 map[string]int…...

Pytorch(三)

一、经典网络架构图像分类模型 数据预处理部分: 数据增强数据预处理DataLoader模块直接读取batch数据 网络模块设置: 加载预训练模型&#xff0c;torchvision中有很多经典网络架构&#xff0c;可以直接调用注意别人训练好的任务跟咱们的并不完全一样&#xff0c;需要把最后…...

Linux——进程控制

目录 1. 进程创建 1.1 fork函数 1.2 fork系统调用内部宏观流程 1.3 fork后子进程执行位置分析 1.4 fork后共享代码分析 1.5 fork返回值 1.6 写时拷贝 1.7 fork常规用法 1.8 fork调用失败的原因 2.进程终止 2.1 进程退出场景 2.2 strerror函数—返回描述错误号的字符…...

剑指 Offer 59 - I. 滑动窗口的最大值 / LeetCode 239. 滑动窗口最大值(优先队列 / 单调队列)

题目&#xff1a; 链接&#xff1a;剑指 Offer 59 - I. 滑动窗口的最大值&#xff1b;LeetCode 239. 滑动窗口最大值 难度&#xff1a;困难 下一篇&#xff1a;剑指 Offer 59 - II. 队列的最大值&#xff08;单调队列&#xff09; 给你一个整数数组 nums&#xff0c;有一个大…...

【Linux后端服务器开发】IP协议

目录 一、IP协议概述 二、协议头格式 三、网段划分 四、IP地址的数量限制 五、路由 六、分片和组装 一、IP协议概述 主机&#xff1a;配有IP地址&#xff0c;但是不进行路由控制的设备 路由器&#xff1a;即配有IP地址&#xff0c;又能进行路由控制 节点&#xff1a;主…...

React组件进阶之children属性,props校验与默认值以及静态属性static

React组件进阶之children属性,props校验与默认值以及静态属性static 一、children属性二、props校验2.1 props说明2.2 prop-types的安装2.3 props校验规则2.4 props默认值 三、静态属性static 一、children属性 children 属性&#xff1a;表示该组件的子节点&#xff0c;只要组…...

ceph集群中RBD的性能测试、性能调优

文章目录 rados benchrbd bench-write测试工具Fio测试ceph rbd块设备的iops性能测试ceph rbd块设备的带宽测试ceph rbd块设备的延迟 性能调优 rados bench 参考&#xff1a;https://blog.csdn.net/Micha_Lu/article/details/126490260 rados bench为ceph自带的基准测试工具&am…...

texshop mac中文版-TeXShop for Mac(Latex编辑预览工具)

texshop for mac是一款可以在苹果电脑MAC OS平台上使用的非常不错的Mac应用软件&#xff0c;texshop for mac是一个非常有用的工具&#xff0c;广泛使用在数学&#xff0c;计算机科学&#xff0c;物理学&#xff0c;经济学等领域的合作&#xff0c;这些程序的标准tetex分布特产…...

简单认识redis高可用实现方法

文章目录 一、redis群集三种模式二、 Redis 主从复制1、简介2、作用&#xff1a;3、流程&#xff1a;4.配置主从复制 三、Redis 哨兵模式1、简介2、原理:3、作用&#xff1a;4、哨兵结构由两部分组成&#xff0c;哨兵节点和数据节点&#xff1a;5、故障转移机制&#xff1a;6、…...

搭建git服务器

1.创建linux账户&#xff0c;创建文件 adduser git passwd gitpsw su git pwd cd ~/ mkdir .ssh cd ~/.ssh touch authorized_keys 2.特别重要(单独起一行)&#xff0c;给文件设权限 chmod 700 /home/git/.ssh chmod 600 /home/git/.ssh/authorized_keys 3.本地生产密钥并把…...

线程中断机制

如何中断一个线程&#xff1f; 首先一个线程不应该由其他线程来强制中断或者停止&#xff0c;而是应该由线程自己自行停止。所以我们看到线程的stop()、resume()、suspend()等方法已经被标记为过时了。 其次在java中没有办法立即停止一个线程&#xff0c;然而停止线程显得尤为重…...

CollectionUtils工具类的使用

来自&#xff1a;小小程序员。 本文仅作记录 org.apache.commons.collections包下的CollectionUtils工具类&#xff0c;下面说说它的用法&#xff1a; 一、集合判空 通过CollectionUtils工具类的isEmpty方法可以轻松判断集合是否为空&#xff0c;isNotEmpty方法判断集合不为…...

基于Nonconvex规划的配电网重构研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

yolo系列笔记(v4-v5)

YOLOv4 YOLOv4网络详解_哔哩哔哩_bilibili 网络结构&#xff0c;在Yolov3的Darknet的基础上增加了CSP结构。 CSP的优点&#xff1a; 加强CNN的学习能力 去除计算瓶颈。 减少显存的消耗。 结构为&#xff1a; 、 其实还是类似与残差网络的结构&#xff0c;保留下采样之前…...

小白如何高效刷题Leetcode?

文章目录 为什么会有这样的现象&#xff1f;研究与学习人生而有别 如何解决困境&#xff1f;1. 要补的&#xff1a;化抽象为具体&#xff0c;列举找规律2. 要补的&#xff1a;前人总结的套路3. 与人交流探讨4. 多写总结文章 总结 明明自觉学会了不少知识&#xff0c;可真正开始…...

使用IDEA打jar包的详细图文教程

1. 点击intellij idea左上角的“File”菜单 -> Project Structure 2. 点击"Artifacts" -> 绿色的"" -> “JAR” -> Empty 3. Name栏填入自定义的名字&#xff0c;Output ditectory 选择 jar 包目标目录&#xff0c;Available Elements 里右击…...

《MySQL 实战 45 讲》课程学习笔记(二)

日志系统&#xff1a;一条 SQL 更新语句是如何执行的&#xff1f; 与查询流程不一样的是&#xff0c;更新流程还涉及两个重要的日志模块&#xff1a;redo log&#xff08;重做日志&#xff09;和 binlog&#xff08;归档日志&#xff09;。 重要的日志模块&#xff1a;redo l…...

微软亚研院提出模型基础架构RetNet或将成为Transformer有力继承者

作为全新的神经网络架构&#xff0c;RetNet 同时实现了良好的扩展结果、并行训练、低成本部署和高效推理。这些特性将使 RetNet 有可能成为继 Transformer 之后大语言模型基础网络架构的有力继承者。实验数据也显示&#xff0c;在语言建模任务上&#xff1a; RetNet 可以达到与…...

探索单例模式:设计模式中的瑰宝

文章目录 常用的设计模式有以下几种&#xff1a;一.创建型模式&#xff08;Creational Patterns&#xff09;&#xff1a;二.结构型模式&#xff08;Structural Patterns&#xff09;&#xff1a;三.行为型模式&#xff08;Behavioral Patterns&#xff09;&#xff1a;四.并发…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...