【FPGA IP系列】FIFO深度计算详解
FIFO(First In First Out)是一种先进先出的存储结构,经常被用来在FPGA设计中进行数据缓存或者匹配传输速率。
FIFO的一个关键参数是其深度,也就是FIFO能够存储的数据条数,深度设计的合理,可以防止数据溢出,也可以节省FPGA资源的消耗。
一、FIFO深度计算影响因素
影响FIFO深度计算的主要因素包括:
-
FIFO的位宽:决定了每个FIFO存储单元的大小
-
FIFO的数据字长:决定每个数据词包含多少比特有效数据
-
FIFO的总存储容量:决定最大可以存储的数据条数
以32位位宽,8位字长的FIFO为例,每个FIFO存储单元需要32/8=4个字节。
如果FIFO总容量为128字节,那么可以存储128/4=32个数据。
此外,FIFO深度还需要考虑:
-
FPGA资源约束条件:过大的FIFO会占用过多资源
-
实际应用需求:深度过小可能导致数据丢失
-
存储密度:选择2的整数次幂作为深度可以优化资源利用
综合考虑上述各因素后确定最佳的FIFO深度。
二、FIFO深度计算步骤
FPGA FIFO深度计算的基本步骤如下:
-
根据传输最恶劣的情况(一段时间内缓存数据量最大的时候),计算剩余数据量(写数据量 - 读数据量)。
-
根据剩余数据总存储容量/写位宽,计算FIFO最大可存储的数据量
-
选择大于等于最大数据量的2的幂作为FIFO深度
-
将FIFO深度转换为二进制表示
如果写比读慢,那就不用担心数据溢出,只有读比写慢的时候,需要考虑fifo深度设计,以防止数据溢出。
三、Verilog代码示例
下面是使用Verilog代码计算FIFO深度的示例:
// FIFO参数
parameter DATA_WIDTH = 32; // 32位
parameter WORD_SIZE = 8; // 8位字长
parameter FIFO_SIZE = 128; // 总容量128字节// 每个FIFO存储单元的大小
localparam FIFO_CELL_SIZE = DATA_WIDTH / WORD_SIZE;// FIFO最大可存储数据量
localparam FIFO_MAX_WORDS = FIFO_SIZE / FIFO_CELL_SIZE; // 选择大于FIFO_MAX_WORDS的2的幂
localparam FIFO_DEPTH = (FIFO_MAX_WORDS > 0) ? (2**$clog2(FIFO_MAX_WORDS)) : 1;// FIFO深度比特宽
localparam FIFO_DEPTH_WIDTH = $clog2(FIFO_DEPTH);
这个示例中,根据位宽32位、字长8位和容量128字节,计算出FIFO深度为32,需要5比特表示。
四、SystemVerilog代码示例
下面是使用SystemVerilog编写的等价代码:
// FIFO参数
localparam int DATA_WIDTH = 32;
localparam int WORD_SIZE = 8;
localparam int FIFO_SIZE = 128;// 每个FIFO存储单元的大小
localparam int FIFO_CELL_SIZE = DATA_WIDTH / WORD_SIZE;// FIFO最大可存储数据量
localparam int FIFO_MAX_WORDS = FIFO_SIZE / FIFO_CELL_SIZE;// 选择大于FIFO_MAX_WORDS的2的幂
localparam int FIFO_DEPTH = (FIFO_MAX_WORDS > 0) ? 2**(FIFO_MAX_WORDS.log2) : 1;// FIFO深度比特宽
localparam int FIFO_DEPTH_WIDTH = $clog2(FIFO_DEPTH);
SystemVerilog通过使用内置的log2函数可以简化代码。
五、FIFO深度计算实例
下面通过一些具体实例进一步说明FIFO深度计算过程。
1、匹配数据带宽
如果FIFO需要匹配指定的数据带宽,那么深度计算要考虑串行化因子的影响。
例如需要200MHz的串行LVDS接口,使用10位数据,那么单位时间内可以传输200MHz * 10位 = 2Gbps的数据。
如果后端接口是32位宽,100MHz,,那么其带宽为100MHz * 32位 = 3.2Gbps。为匹配带宽,前端数据需要缓存,此时FIFO深度计算如下:
后端带宽 = 3.2Gbps
前端带宽 = 2Gbps
串行化因子 = 后端带宽/前端带宽 = 3.2/2 = 1.6
FIFO深度 > 串行化因子 = 1.6
因此,选择FIFO深度为2才能匹配带宽需求。
2、防止数据溢出
如果写入FIFO的数据速率可能高于读取速率,那么需要增加FIFO深度来防止数据溢出。
场景1:如写入速率是100MB/s,读取速率是80MB/s,允许最大等待时间为50μs,那么需要的FIFO大小计算如下:
写入速率 = 100MB/s
读取速率 = 80MB/s
最大等待时间 = 50μs
额外存储量 = 写入速率 × 最大等待时间 = 100MB/s × 50μs= 5000bit
因此,FIFO深度需要考虑额外存储5000bit的数据量,也就是除了正常存储量外还需要确保至少有5000bit的额外FIFO深度。
场景2:异步FIFO,写时钟100MHZ,读时钟80MHZ。读写位宽均为16bit。已知每100个写周期最多写入960bit数据,读侧每时钟读取一个数据。问:FIFO深度至少为多少?
最恶劣情况:前100个周期的后连续60个周期写入960bit数据,后100个周期的前连续60个周期写入960bit数据。写数据:最大数量为连续120个写周期内,写入数据量960*2bit = 1920 bit,用时为120/100 ns。读数据:这段时间内的数据量为 120/100 * 80 * 16bit = 1536 bit 。最大缓存数据量为 1920 - 1536 = 384 bit写数据最大缓存深度:384/16 = 24最大深度需要是2的幂次方,即为32
3、优化资源利用
有时为了优化资源利用,可能需要降低FIFO深度。
例如根据带宽计算,一个18Kb block RAM可以实现depth=512的FIFO,但考虑到资源限制,只能使用一个9Kb RAM,这时可以将FIFO设计为depth=256,节省block RAM资源。
同样,为了优化资源利用,FIFO深度通常设计为2的整数次幂,这可以减少地址解码逻辑所需资源。
六、结论
FIFO深度计算并不复杂,但需要考虑许多实际因素,如带宽匹配、防溢出和资源优化等。一般来说,根据存储需求计算出最大深度,再综合考虑资源和性能约束,选择大于等于该最大深度的2的幂次方作为最终FIFO深度,既能满足存储需求,又可以优化FPGA资源利用。
本文将不断定期更新中,码字不易,点⭐️赞,收⭐️藏一下,不走丢哦
本文由FPGA入门到精通原创,有任何问题,都可以在评论区和我交流哦
您的支持是我持续创作的最大动力!如果本文对您有帮助,请给一个鼓励,谢谢。
相关文章:
【FPGA IP系列】FIFO深度计算详解
FIFO(First In First Out)是一种先进先出的存储结构,经常被用来在FPGA设计中进行数据缓存或者匹配传输速率。 FIFO的一个关键参数是其深度,也就是FIFO能够存储的数据条数,深度设计的合理,可以防止数据溢出,也可以节省…...
JavaScript中语句和表达式
在JavaScript编程中,Statements和Expressions都是代码的构建块,但它们有不同的特点和用途。 ● Statements(语句)是执行某些操作的完整命令;每个语句通常以分号结束。例如,if语句、for语句、switch语句、函…...
打卡力扣题目十
#左耳听风 ARST 打卡活动重启# 目录 一、题目 二、解决方法一 三、解决方法二 关于 ARTS 的释义 —— 每周完成一个 ARTS: ● Algorithm: 每周至少做一个 LeetCode 的算法题 ● Review: 阅读并点评至少一篇英文技术文章 ● Tips: 学习至少一个技术技巧 ● Shar…...
UniApp实现API接口封装与请求方法的设计与开发方法
UniApp实现API接口封装与请求方法的设计与开发方法 导语:UniApp是一个基于Vue.js的跨平台开发框架,可以同时开发iOS、Android和H5应用。在UniApp中,实现API接口封装与请求方法的设计与开发是一个十分重要的部分。本文将介绍如何使用UniApp实…...
利用小波分解信号,再重构
function [ output_args ] example4_5( input_args ) %EXAMPLE4_5 Summary of this function goes here % Detailed explanation goes here clc; clear; load leleccum; s leleccum(1:3920); % 进行3层小波分解,小波基函数为db2 [c,l] wavedec(s,3,db2); %进行…...
QT数据库编程
ui界面 mainwindow.cpp #include "mainwindow.h" #include "ui_mainwindow.h" #include <QButtonGroup> #include <QFileDialog> #include <QMessageBox> MainWindow::MainWindow(QWidget* parent): QMainWindow(parent), ui(new Ui::M…...
基于stm32单片机的直流电机速度控制——LZW
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 一、实验目的二、实验方法三、实验设计1.实验器材2.电路连接3.软件设计(1)实验变量(2)功能模块a)电机接收信号…...
实际项目中使用mockjs模拟数据
项目中的痛点 自己模拟的数据对代码的侵入程度太高,接口完成后要删掉对应的代码,导致接口开发完后端同事开发完,前端自己得加班;接口联调的时间有可能会延期,接口完成的质量参差不齐;对于数据量过大的模拟…...
【家庭公网IPv6】
家庭公网IPv6 这里有两个网站: 1、 IPV6版、多地Tcping、禁Ping版、tcp协议、tcping、端口延迟测试,在本机搭建好服务器后,可以用这个测试外网是否可以访问本机; 2、 IP查询ipw.cn,这个可以查询本机的网络是否IPv6访问…...
【iOS】Frame与Bounds的区别详解
iOS的坐标系 iOS特有的坐标是,是在iOS坐标系的左上角为坐标原点,往右为X正方向,向下为Y正方向。 bounds和frame都是属于CGRect类型的结构体,系统的定义如下,包含一个CGPoint(起点)和一个CGSiz…...
SpringBoot百货超市商城系统 附带详细运行指导视频
文章目录 一、项目演示二、项目介绍三、运行截图四、主要代码 一、项目演示 项目演示地址: 视频地址 二、项目介绍 项目描述:这是一个基于SpringBoot框架开发的百货超市系统。首先,这是一个很适合SpringBoot初学者学习的项目,代…...
【实践篇】推荐算法PaaS化探索与实践 | 京东云技术团队
作者:京东零售 崔宁 1. 背景说明 目前,推荐算法部支持了主站、企业业务、全渠道等20业务线的900推荐场景,通过梳理大促运营、各垂直业务线推荐场景的共性需求,对现有推荐算法能力进行沉淀和积累,并通过算法PaaS化打造…...
持续贡献开源力量,棱镜七彩加入openKylin
近日,棱镜七彩签署 openKylin 社区 CLA(Contributor License Agreement 贡献者许可协议),正式加入openKylin 开源社区。 棱镜七彩成立于2016年,是一家专注于开源安全、软件供应链安全的创新型科技企业。自成立以来&…...
Kafka的消费者如何管理偏移量?
在Kafka中,消费者可以通过管理和跟踪偏移量(offset)来确保消费者在消费消息时的准确性和可靠性。偏移量表示消费者在特定分区中已经消费的消息的位置。以下是几种常见的偏移量管理方式: 手动提交偏移量:消费者可以通过…...
IntelliJ IDEA流行的构建工具——Gradle
IntelliJ IDEA,是java编程语言开发的集成环境。IntelliJ在业界被公认为最好的java开发工具,尤其在智能代码助手、代码自动提示、重构、JavaEE支持、各类版本工具(git、svn等)、JUnit、CVS整合、代码分析、 创新的GUI设计等方面的功能可以说是超常的。 如…...
nacos源码打包及相关配置
nacos 本地下载后,需要 install 下: mvn clean install -Dmaven.test.skiptrue -Dcheckstyle.skiptrue -Dpmd.skiptrue -Drat.skiptruenacos源码修改后,重新打包生成压缩包命令:在 distribution 目录中运行: mvn -Pr…...
【机器学习】Multiple Variable Linear Regression
Multiple Variable Linear Regression 1、问题描述1.1 包含样例的X矩阵1.2 参数向量 w, b 2、多变量的模型预测2.1 逐元素进行预测2.2 向量点积进行预测 3、多变量线性回归模型计算损失4、多变量线性回归模型梯度下降4.1 计算梯度4.2梯度下降 首先,导入所需的库 im…...
自己创建的类,其他类中使用错误
说明:自己创建的类,在其他类中创建,报下面的错误(Cannot resolve sysmbol ‘Redishandler’); 解决:看下是不是漏掉了包名 加上包名,问题解决;...
Packet Tracer – 使用 TFTP 服务器升级思科 IOS 映像。
Packet Tracer – 使用 TFTP 服务器升级思科 IOS 映像。 地址分配表 设备 接口 IP 地址 子网掩码 默认网关 R1 F0/0 192.168.2.1 255.255.255.0 不适用 R2 G0/0 192.168.2.2 255.255.255.0 不适用 S1 VLAN 1 192.168.2.3 255.255.255.0 192.168.2.1 TFTP …...
并查集基础
一、概念及其介绍 并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题。 并查集的思想是用一个数组表示了整片森林(parent),树的根节点唯一标识了一个集合,我们只要找到了某个元素的的树根…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
数据分析六部曲?
引言 上一章我们说到了数据分析六部曲,何谓六部曲呢? 其实啊,数据分析没那么难,只要掌握了下面这六个步骤,也就是数据分析六部曲,就算你是个啥都不懂的小白,也能慢慢上手做数据分析啦。 第一…...
【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析
1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器(TI)推出的一款 汽车级同步降压转换器(DC-DC开关稳压器),属于高性能电源管理芯片。核心特性包括: 输入电压范围:2.95V–6V,输…...
