图像中不规则物体的长轴与短轴:OpenCV实现指南
1.首先,读取图像并将其转换为灰度图像。
2.进行图像预处理,包括使用高斯模糊和阈值化,以便更好地处理图像。
3.通过使用OpenCV的cv2.findContours()函数,找到图像中的所有轮廓。
4.遍历所有轮廓,如果轮廓点的数量大于等于5个,则将这个轮廓拟合为一个椭圆。
5.如果成功拟合出椭圆,则获取椭圆的中心坐标、长轴长度、短轴长度和旋转角度。
6.使用计算得到的椭圆信息,计算出长轴和短轴的端点坐标。
7.使用OpenCV的cv2.ellipse()函数在原始图像上绘制椭圆,并使用cv2.circle()函数在图像上绘制长轴和短轴的四个端点,并分别用红色和蓝色表示。
8.最后,显示带有椭圆和端点的图像,等待用户按下任意键后关闭显示窗口。
import cv2
import numpy as npimage = cv2.imread("XXX.png", cv2.IMREAD_GRAYSCALE)
blur = cv2.GaussianBlur(image, (5, 5), 0)
_, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)ellipse = None
for contour in contours:if len(contour) >= 5:ellipse = cv2.fitEllipse(contour)breakif ellipse is not None:center, axes, angle = ellipsemajor_axis, minor_axis = axesangle_rad = np.deg2rad(angle)cos_angle = np.cos(angle_rad)sin_angle = np.sin(angle_rad)# 长轴端点坐标x1 = int(center[0] + major_axis / 2 * cos_angle)y1 = int(center[1] - major_axis / 2 * sin_angle)x2 = int(center[0] - major_axis / 2 * cos_angle)y2 = int(center[1] + major_axis / 2 * sin_angle)# 短轴端点坐标x3 = int(center[0] + minor_axis / 2 * sin_angle)y3 = int(center[1] + minor_axis / 2 * cos_angle)x4 = int(center[0] - minor_axis / 2 * sin_angle)y4 = int(center[1] - minor_axis / 2 * cos_angle)# 在图像上绘制椭圆及长轴和短轴的端点image_with_ellipse = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)cv2.ellipse(image_with_ellipse, ellipse, (0, 255, 0), 2)cv2.circle(image_with_ellipse, (x1, y1), 5, (0, 0, 255), -1) # 长轴端点用红色标记cv2.circle(image_with_ellipse, (x2, y2), 5, (0, 0, 255), -1) # 长轴端点用红色标记cv2.circle(image_with_ellipse, (x3, y3), 5, (255, 0, 0), -1) # 短轴端点用蓝色标记cv2.circle(image_with_ellipse, (x4, y4), 5, (255, 0, 0), -1) # 短轴端点用蓝色标记# 显示图像cv2.imshow("Image with Ellipse and Axes", image_with_ellipse)cv2.waitKey(0)cv2.destroyAllWindows()
else:print("No ellipse found.")相关文章:
图像中不规则物体的长轴与短轴:OpenCV实现指南
1.首先,读取图像并将其转换为灰度图像。 2.进行图像预处理,包括使用高斯模糊和阈值化,以便更好地处理图像。 3.通过使用OpenCV的cv2.findContours()函数,找到图像中的所有轮廓。 4.遍历所有轮廓,如果轮廓点的数量大…...
C/C++开发,opencv与qt结合播放视频
目录 一、qt_ui创建 1.1 ui设置 1.2 ui及代码输出保存 二、创建工程 2.1 工程目录及编译设置 2.2 源码设计 三、编译及测试 3.1 程序编译 3.2 程序运行 首先声明,这是一个OpenCV 3学习文档的案例,但是说明有些过于省略,只有一些简短的代码…...
磁共振图像处理中 fft1c 和 ifft1c 函数的 Python 实现
fft1c 和 ifft1c 是 MRI 图像处理的常用函数。通常使用如下的 Matlab 实现 (Michael Lustig,2005) function res ifft1c(x,dim)% res fft1c(x) % % orthonormal forward 1D FFT %nsize(x,dim); shftzeros(1,5); shft(dim)ceil(n/2);xcirc…...
阿里云国际站香港地域服务器访问延迟丢包的原因及解决方法
阿里云百科有2台香港地域的轻量应用服务器,国内使用发现Ping值延迟丢包严重,从大陆到香港访问是经过国际链路和运营商国际路由节点,会受到到国际链路拥塞,以及运营商出境路由限制,导致无法正常连接或访问某些网站&…...
GULI PART.1
文章目录 1、尚硅谷-谷粒学院1.1、系统功能模块介绍1.2、系统开发方式 2、Mybatis-Plus2.1、什么是 MyBatis?2.2、什么是Mybatis-Plus?2.3、Mybatis-plus 的特性2.4、支持的数据库 3、Mybatis-Plus入门3.1、创建表和数据3.2、创建SpringBoot工程3.3、安装…...
NetApp FAS2750 和 FAS2820:适用于分布式企业和从远程到核心的 FAS
NetApp FAS2750 和 FAS2820:适用于分布式企业和从远程到核心的 FAS 拥有分布式企业和多个办公位置的客户希望使用这些系统进行虚拟化,以及为大型 FAS 和 AFF 系统提供简单且经济高效的备份和灾难恢复。 为什么要从 NetApp FAS 系列中选择一个型号&…...
剑指YOLOv8改进最新MPDIoU损失函数:超越现有多种G/D/C/EIoU,23年7月首发论文,高效准确的边界框回归的损失
💡本篇内容:剑指YOLOv8改进最新MPDIoU损失函数:超越现有多种G/D/C/EIoU,23年7月首发论文,高效准确的边界框回归的损失 💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 💡:重点:该专栏《剑指YOLOv8原创改进》只更新改进 YOLO…...
SQL-每日一题【1070. 产品销售分析 III】
题目 销售表 Sales: 产品表 Product: 编写一个 SQL 查询,选出每个销售产品 第一年 销售的 产品 id、年份、数量 和 价格。 结果表中的条目可以按 任意顺序 排列。 查询结果格式如下例所示: 示例 1: 解题思路 前置知…...
为何押注AI大模型的微软云,业绩增速反而不如谷歌云?
科技云报道原创。 上周微软、谷歌、Meta等国外科技公司相继发布最新财报。作为与人工智能、云计算和数字广告等领域相关的巨头,它们的一举一动都将对市场产生影响,同时也吸引着众多从业者的关注。 在国外三大云巨头中,谷歌云的市场份额长期…...
CDN加速服务的工作原理
CDN(内容分发网络)加速服务是一种用于提高网站和应用性能的技术,通过将内容分发到全球多个节点,使用户可以从就近的节点获取所需内容,从而实现更快的加载速度和更稳定的访问体验。下面详细介绍CDN加速服务的工作原理&a…...
在CSDN学Golang云原生(Kubernetes Service)
一,service的定义与基本用法 在 Kubernetes 中,Service 是一种抽象概念,用于定义一组 Pod 并为它们提供访问入口。通过 Service,您可以将多个 Pod 组合成一个逻辑单元,并使用标签选择器来确定哪些 Pod 属于该 Service…...
【数据结构篇C++实现】- 图
友情链接:C/C系列系统学习目录 文章目录 🚀一、图的基本概念和术语1、有向图和无向图3、基本图和多重图4、完全图5、子图6、连通、连通图和连通分量7、强连通图、强连通分量8、生成树、生成森林9、顶点的度、入度和出度10、边的权和网11、稠密图、稀疏图…...
Sentinel持久化规则
项目中有用到Sentinel,然后需要将Sentinel上配置的规则做持久化(或者初始化),通过改写Sentinel源码实现了需求,下面记录一下实现过程。 如果不知道Sentinel怎么搭,可以看看: 流控平台Sentinel搭建和接入教程_东皋长歌的博客-CSDN博客 一,背景 Sentinel是Alibaba开源…...
list与sort()
运行代码: //list与sort() #include"std_lib_facilities.h" //声明Item类 struct Item {string name;int iid;double value;Item():name(" "),iid(0),value(0.0){}Item(string ss,int ii,double vv):name(ss),iid(ii),value(vv){}friend istre…...
6个月、21天,GoldenDB分布式数据库核心系统落地中移动
近日,2023“鼎新杯”数字化转型应用大赛入围名单公示,山东移动基于GoldenDB分布式数据库的CRM&BOSS核心系统自主创新实践成功入选。该项目是中兴通讯与中国移动在数据库关键领域的又一个合作范例。 核心系统业务量大,分布式转型迫在眉睫 …...
如何正确培养数据思维?
在大数据时代,数据思维已成了每个人的必备品。下面,我们就来了解一下,什么是数据思维。不过要想弄懂什么是数据思维,首先来打破大家对数据的错误认知,数据不仅仅指数字。 1. 数据思维是什么? 百度百科对数…...
JavaScript中的?.和??的用法
1、?.(可选链运算符) 在JavaScript中,"?.“是一种叫做"Optional Chaining”(可选链)的新操作符。它允许我们在访问一个可能为null或undefined的属性或调用一个可能不存在的方法时,避免出现错误…...
Git for linux
<1> linux 安装git sudo apt-get install git-all <2> 创建git,分为两部分,远程网络部分和本地主机部分 远程网路:登录GitHub: Let’s build from here GitHub 注册帐号,创建登录密码,此密码很长&a…...
uniapp小程序,根据小程序的环境版本,控制的显页面功能按钮的示隐藏
需求:根据小程序环境控制控制页面某个功能按钮的显示隐藏; 下面是官方文档和功能实现的相关代码: 实现上面需要,用到了uni.getAccountInfoSync(): uni.getAccountInfoSync() 是一个 Uniapp 提供的同步方法,…...
kotlin 编写一个简单的天气预报app(二)增加搜索城市功能
增加界面显示openweathermap返回的信息。 在activity_main.xml里增加输入框来输入城市,在输入款旁边增加搜索按钮来进行查询。 然后原来显示helloworld的TextView用来显示结果。 1. 增加输入城市名字的EditText <EditTextandroid:id"id/editTextCity"…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
