汽车分析,随时间变化的燃油效率
简述
今天我们来分析一个汽车数据。
数据集由以下列组成:
- 名称:每辆汽车的唯一标识符。
- MPG:燃油效率,以英里/加仑为单位。
- 气缸数:发动机中的气缸数。
- 排量:发动机排量,表示其大小或容量。
- 马力:发动机的功率输出。
- 重量:汽车的重量。
- 加速:提高速度的能力,以秒为单位。
- 车型年份:汽车模型的制造年份。
- 原产地:每辆汽车的原产地国家或地区。
总的来看数据内容不是很多,分析起来还是很容易的。
目标
这个项目的主要目标是了解汽车的不同特性之间的关系,以及它们如何影响燃油效率(MPG -每加仑英里数)。该项目还旨在发现数据中任何有趣的趋势或模式,从而为汽车行业提供见解。
数据清理和预处理
# 导入库
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' ## 设置中文显示from scipy.stats import f_onewayfrom scipy.stats import ttest_ind# 导入数据
df = pd.read_csv('D:桌面\\Automobile.csv',encoding='gbk')

检查所有列的数据类型

检查缺失值

箱型图
df['马力'] = df['马力'].fillna(df['马力'].mean())
# 数字列列表
num_cols = ['mpg', '气缸数', '排量', '马力', '重量', '加速', '车型年份']for col in num_cols:plt.figure(figsize=(8, 4))sns.boxplot(df[col])plt.title(f'{col}箱线图 ')plt.show()







处理 ‘马力’ 中的异常值
首先,计算“马力”(horsepower)的四分位距(IQR)
Q1_hp = df['马力'].quantile(0.25)
Q3_hp = df['马力'].quantile(0.75)
IQR_hp = Q3_hp - Q1_hp
定义异常值的上限和下限。
lower_bound_hp = Q1_hp - 1.5 * IQR_hp
upper_bound_hp = Q3_hp + 1.5 * IQR_hp
将异常值限制在一定范围内。
df['马力'] = df['马力'].clip(lower=lower_bound_hp, upper=upper_bound_hp)
重复这个过程,针对“重量”
Q1_weight = df['重量'].quantile(0.25)
Q3_weight = df['重量'].quantile(0.75)
IQR_weight = Q3_weight - Q1_weightlower_bound_weight = Q1_weight - 1.5 * IQR_weight
upper_bound_weight = Q3_weight + 1.5 * IQR_weightdf['重量'] = df['重量'].clip(lower=lower_bound_weight, upper=upper_bound_weight)
特征工程
创建一个新的特征’hp_to_weight’,它是马力与重量的比率。
df['hp_to_weight'] = df['马力'] / df['重量']
检查前几行 DataFrame 以确认更改。
df.head()

生成数值变量的描述性统计数据。
df.describe()

数据可视化
生成数值变量的直方图。
num_cols = ['mpg', '气缸数', '排量', '马力', '重量', '加速', '车型年份', 'hp_to_weight']for col in num_cols:plt.figure(figsize=(8, 4))sns.histplot(df[col], kde=True)plt.title(f' {col}直方图')plt.show()








生成分类变量的条形图
plt.figure(figsize=(8, 4))
sns.countplot(x='原产地', data=df)
plt.title('原产地条形图')
plt.show()

双变量分析
为成对的数值变量生成散点图
num_cols = ['mpg', '气缸数', '排量', '马力', '重量', '加速', '车型年份', 'hp_to_weight']sns.pairplot(df[num_cols])
plt.show()

数值变化的相关矩阵
#计算数值变量之间的相关系数。
corr_matrix = df[num_cols].corr()# 显示相关矩阵
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('数值变化的相关矩阵')
plt.show()

group1 = df[df['原产地'] == 'usa']['mpg']
group2 = df[df['原产地'] == 'europe']['mpg']
group3 = df[df['原产地'] == 'japan']['mpg']# 进行单因素方差分析。
f_stat, p_value = f_oneway(group1, group2, group3)# 输出 F-statistic 和 p-value
print(f'F-statistic: {f_stat}')
print(f'p-value: {p_value}')

多变量分析
生成一组变量的配对图。
subset_cols = ['mpg', '马力', '重量', '原产地']
sns.pairplot(df[subset_cols], hue='原产地')
plt.show()

时间分析
# 计算每个型号年份的平均每加仑英里数。
avg_mpg_by_year = df.groupby('车型年份')['mpg'].mean()# 绘制随着时间变化的平均每加仑英里数。
plt.figure(figsize=(10, 6))
sns.lineplot(data=avg_mpg_by_year)
plt.title('平均每加仑英里数按车型年份分类')
plt.xlabel('车型年份')
plt.ylabel(' MPG平均值')
plt.show()

假设检验
# 删除具有缺失“mpg”值的行。
df = df.dropna(subset=['mpg'])# 将数据分成两组。
group1 = df[df['车型年份'] < 75]['mpg'] # 1975年之前制造的汽车
group2 = df[df['车型年份'] >= 75]['mpg'] # 1975年之后制造的汽车# 进行双样本t检验。
from scipy.stats import ttest_ind
t_stat, p_value = ttest_ind(group1, group2)# 输出 the t-statistic the p-value
print(f't-statistic: {t_stat}')
print(f'p-value: {p_value}')

结论
-
随着时间的推移,燃油效率:平均每加仑英里数(mpg)似乎随着时间的推移而增加,这表明汽车变得更加省油。这可能是由于技术的进步和汽车制造业对燃油效率的日益关注。
-
马力和重量:马力和重量之间似乎存在正相关关系,表明较重的汽车往往拥有更强劲的发动机。然而,马力和重量似乎都与mpg负相关,这表明较重的汽车和发动机功率更大的汽车往往更省油。
-
产地和燃油效率:我们的假设检验表明,不同产地的汽车平均每加仑汽油行驶里程有显著差异。这表明汽车的生产地区可能会对其燃油效率产生影响。
-
新功能-马力重量比:我们创造的新功能,马力重量比,可能会为这些变量和mpg之间的关系提供不同的结果
题外话
我整理了一些资源,如果你也对Python和大数据感兴趣,关注下方公众号免费提取资料。





相关文章:
汽车分析,随时间变化的燃油效率
简述 今天我们来分析一个汽车数据。 数据集由以下列组成: 名称:每辆汽车的唯一标识符。MPG:燃油效率,以英里/加仑为单位。气缸数:发动机中的气缸数。排量:发动机排量,表示其大小或容量。马力&…...
大数据面试题之Elasticsearch:每日三题(六)
大数据面试题之Elasticsearch:每日三题 1. 为什么要使用Elasticsearch?2.Elasticsearch的master选举流程?3.Elasticsearch集群脑裂问题? 1. 为什么要使用Elasticsearch? 系统中的数据,随着业务的发展,时间…...
【管理设计篇】聊聊分布式配置中心
为什么需要配置中心 对于一个软件系统来说,除了数据、代码,还有就是软件配置,比如操作系统、数据库配置、服务配置 端口 ip 、邮箱配置、中间件软件配置、启动参数配置等。如果说是一个小型项目的话,可以使用Spring Boot yml文件…...
远程控制平台简介
写在前面 之所以想自己动手实现一个远程控制平台,很大一部分原因是因为我那糟糕的记性,虽然经常加班到很晚,拖着疲惫的步伐回到家,才想起忘记打卡了,如果我能在家控制在办公室的手机打一下卡就好了… 有人说,市场上有TeamViewer,向日葵,AnyDesk,ToDesk,等等这些老大…...
韦东山Linux驱动入门实验班(5)LED驱动---驱动分层和分离,平台总线模型
前言 (1)前面已经已经详细介绍了LED驱动如何进行编写的代码。如果韦东山Linux驱动入门实验班(4)LED驱动已经看懂了,驱动入门实验班后面的那些模块实验,其实和单片机操作差不太多了。我就不再浪费时间进行讲…...
【雕爷学编程】MicroPython动手做(02)——尝试搭建K210开发板的IDE环境
知识点:简单了解K210芯片 2018年9月6日,嘉楠科技推出自主设计研发的全球首款基于RISC-V的量产商用边缘智能计算芯片勘智K210。该芯片依托于完全自主研发的AI神经网络加速器KPU,具备自主IP、视听兼具与可编程能力三大特点,能够充分适配多个业务场景的需求。作为嘉楠科…...
C#——Thread与Task的差异比较及使用环境
C#——Thread与Task的差异比较及使用环境 前言一、差异1. 创建和管理:2. 异步编程:3. 返回值:4. 异常处理:5. 线程复用: 总结 前言 前面两篇文章,分别通过各自的实例讲了关于Task以及Thread的相关的使用特…...
刷题 31-35
三十一、 747. 至少是其他数字两倍的最大数 给你一个整数数组 nums ,其中总是存在 唯一的 一个最大整数 。 请你找出数组中的最大元素并检查它是否 至少是数组中每个其他数字的两倍 。如果是,则返回 最大元素的下标 ,否则返回 -1 。 示例 1&a…...
【mysql】—— 数据类型详解
序言: 本期我将大家认识关于 mysql 数据库中的基本数据类型的学习。通过本篇文章,我相信大家对mysql 数据类型的理解都会更加深刻。 目录 (一)数据类型分类 (二)数值类型 1、tinyint类型 2、bit类型 …...
kafka常用命令
查看主题 ./kafka-topics.sh --list --bootstrap-server 10.1.1.2:9092 创建主题 ./kafka-topics.sh --bootstrap-server 10.1.1.2:9092 --create --topic test_topic --partitions 1 查看消费者列表--list ./kafka-consumer-groups.sh --bootstrap-server 10.1.1.2:9092 -…...
数字图像处理(番外)图像增强
图像增强 图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。 图像对比度 图像对比度计算方式如下: C ∑ δ δ ( i , j …...
flutter:轮播
前言 介绍几个比较有不错的轮播库 swipe_deck 与轮播沾边,但是更多的是一种卡片式的交互式界面设计。它的主要概念是用户可以通过左右滑动手势浏览不同的卡片,每张卡片上都有不同的信息或功能。 Swipe deck通常用于展示图片、产品信息、新闻文章、社…...
高忆管理:股票投资策略是什么?有哪些?
在进行股票买卖过程中,出资者需求有自己的方案和出资战略,并且主张严格遵从出资战略买卖,不要跟风操作。那么股票出资战略是什么?有哪些?下面就由高忆管理为我们剖析: 股票出资战略简略来说便是能够协助出资…...
为公网SSH远程Ubuntu配置固定的公网TCP端口地址主图
文章目录 为公网SSH远程Ubuntu配置固定的公网TCP端口地址 为公网SSH远程Ubuntu配置固定的公网TCP端口地址 在上篇文章中,我们通过cpolar建立的临时TCP数据隧道,成功连接了位于其他局域网下的Ubuntu系统,实现了不同操作系统、不同网络下的系统…...
【前端知识】React 基础巩固(四十一)——手动路由跳转、参数传递及路由配置
React 基础巩固(四十一)——手动路由跳转、参数传递及路由配置 一、实现手动跳转路由 利用 useNavigate 封装一个 withRouter(hoc/with_router.js) import { useNavigate } from "react-router-dom"; // 封装一个高阶组件 function withRou…...
Qt几种字符类型的相互转换
Qt几种字符类型的相互转换 将const QString转换为const char*将const char*转换为const QStringQstring转换为string把string转换为QstringQt中弹出一个窗口 将const QString转换为const char* #include <QString> #include <iostream>int main() {const QString …...
软件测试员的非技术必备技能
成为软件测试人员所需的技能 非技术技能 以下技能对于成为优秀的软件测试人员至关重要。 将您的技能组合与以下清单进行比较,以确定软件测试是否适合您 - 分析技能:优秀的软件测试人员应具备敏锐的分析能力。 分析技能将有助于将复杂的软件系统分解为…...
渗透测试:Linux提权精讲(二)之sudo方法第二期
目录 写在开头 sudo expect sudo fail2ban sudo find sudo flock sudo ftp sudo gcc sudo gdb sudo git sudo gzip/gunzip sudo iftop sudo hping3 sudo java 总结与思考 写在开头 本文在上一篇博客的基础上继续讲解渗透测试的sudo提权方法。相关内容的介绍与背…...
ansible安装lnmp(集中式)
文章目录 一、安装nginx二、安装mysql三、安装php测试: 一、安装nginx - name: the nginx playhosts: webserversremote_user: roottasks:- name: stop firewalld #关闭防火墙service: namefirewalld statestopped enabledno- name: selinux stopc…...
Tomcat的基本使用,如何用Maven创建Web项目、开发完成部署的Web项目
Tomcat 一、Tomcat简介二、Tomcat基本使用三、Maven创建Web项目3.1 Web项目结构3.2开发完成部署的Web项目3.3创建Maven Web项目3.3.1方式一3.3.2方式二(个人推荐) 总结 一、Tomcat简介 Web服务器: Web服务器是一个应用程序(软件&…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
