15.python设计模式【函数工厂模式】
1.知识讲解
- 内容:定义一个字典,在python中一切皆对象,将所有的函数进行封装,然后定一个分发函数进行分发,将原来if…else全部干掉。
- 角色:
- 函数(function)
- 函数工厂(function factory)
- 客户端 (client)
- 举个例子:
需求:封装一个函数,能够同时进行加减乘除运算。
加减乘除函数:
# 定义一个计算器的相关功能
def plus(a, b):return a + bdef substact(a, b):return a - bdef multiply(a, b):return a * bdef divide(a, b):return a / b
定义封装函数:
# 定义一个计算函数
def cal(a, b, how):if how == 1:return plus(a, b)elif how == 2:return substact(a, b)elif how == 3:return multiply(a, b)else:return None
从上面这个封装函数来看,太多了if…else…很冗余
于是定义一个函数工厂,将所有函数进行封装,然后根据函数名进行调用
# 定义函数工厂
# 在python里面一切皆是对象
# 定义了一个字典,key是函数名称,value是函数对象
func_map = {"plus": plus,"substract": substact,"multiply": multiply,"divide": divide
}
# 函数工厂模式就是一种对函数进行动态分发的模式
def cal(a,b,how):if how in func_map.keys():return func_map[how](a,b)else:return None
- 优点:
- 对函数进行动态分发,减少了函数的冗余代码。
2.实战
2.1 demo1
需求:这个是我在写深度学习项目的时候遇到的一个设计模式,当初不明白,现在明白了这个设计模式。自然语言处理中,有一次有一个实验,需要同时验证Bert,roberta,gpt,Xnet等预训练模型的相关功能的性能,他们大致分以下几个模块
- config
- tokenizer
- 掩码模型:Bert,roberta,gpt使用的是mlm掩码模型,而Xnet使用的是plm掩码模型
- 自带的分类模型:sequence_classifier ,但是GPT没有
因为他们每个的这四个部分的功能实现都不相同,但是在实验过程中都需要用到,因此就用到了函数工厂模式。
from torch import nn
from transformers import BertConfig, BertTokenizer, BertForSequenceClassification, BertForMaskedLM, RobertaConfig, \RobertaTokenizer, RobertaForSequenceClassification, RobertaForMaskedLM, XLMRobertaConfig, XLMRobertaTokenizer, \XLMRobertaForSequenceClassification, XLMRobertaForMaskedLM, XLNetConfig, XLNetTokenizer, \XLNetForSequenceClassification, XLNetLMHeadModel, AlbertConfig, AlbertTokenizer, AlbertForSequenceClassification, \AlbertForMaskedLM, GPT2Config, GPT2Tokenizer, GPT2LMHeadModel, AutoTokenizer# 定义一个函数工厂,将所有的函数全部用一个字典封装好,到时候用到那个预训练模型,则就根据预训练模型的名称调用对应的函数。
MODEL_CLASSES = {'bert': {'config': BertConfig,'tokenizer': BertTokenizer,"sequence_classifier": BertForSequenceClassification,"mlm":BertForMaskedLM},'roberta': {'config': RobertaConfig,'tokenizer': RobertaTokenizer,"sequence_classifier": RobertaForSequenceClassification,"mlm": RobertaForMaskedLM},'xlm-roberta': {'config': XLMRobertaConfig,'tokenizer': XLMRobertaTokenizer,"sequence_classifier": XLMRobertaForSequenceClassification,"mlm": XLMRobertaForMaskedLM},'xlnet': {'config': XLNetConfig,'tokenizer': XLNetTokenizer,"sequence_classifier": XLNetForSequenceClassification,"plm": XLNetLMHeadModel},'albert': {'config': AlbertConfig,'tokenizer': AlbertTokenizer,"sequence_classifier": AlbertForSequenceClassification,"mlm": AlbertForMaskedLM},'gpt2': {'config': GPT2Config,'tokenizer': GPT2Tokenizer,"mlm": GPT2LMHeadModel},
}class TransformerModelWrapper(nn.Module):# 基于Transformer的语言模型的包装器。'''WrapperConfig封装了:model_type为Bert,roberta,gpt,Xnet,wrapper_type为mlm和plm两种类型'''def __init__(self, config: WrapperConfig):super(TransformerModelWrapper, self).__init__()self.config = configconfig_class = MODEL_CLASSES[self.config.model_type]['config']tokenizer_class = MODEL_CLASSES[self.config.model_type]['tokenizer']model_class = MODEL_CLASSES[self.config.model_type][self.config.wrapper_type]
相关文章:
15.python设计模式【函数工厂模式】
1.知识讲解 内容:定义一个字典,在python中一切皆对象,将所有的函数进行封装,然后定一个分发函数进行分发,将原来if…else全部干掉。角色: 函数(function)函数工厂(funct…...

Redis主从复制、哨兵、cluster集群原理+实验
目录 一、Redis 主从复制 1、主从复制的作用 2、主从复制流程 3、搭建Redis 主从复制 安装Redis(所有主机) 修改Master节点Redis配置文件 修改Slave节点Redis配置文件 验证主从效果 一、Redis 主从复制 主从复制,是指将一台Redis服务器的数据&am…...
微信小程序如何实现页面传参?
前言 只要你的小程序超过一个页面那么可能会需要涉及到页面参数的传递,下面我总结了 4 种页面方法。 路径传递 通过在url后面拼接参数,参数与路径之间使用 ? 分隔,参数键与参数值用 相连,不同参数用 & 分隔;如…...

OPC DA 客户端与服务器的那点事
C#开发OPC客户端,使用OPCDAAuto.dll。在开发过程中偶遇小坎坷,主要记录一下问题解决办法。 1、建立客户端,参考链接。建立WinFrom工程,将博客中代码全部复制即可运行: https://www.cnblogs.com/kjgagaga/p/17011730.…...

Java 错误异常介绍(Exceptions)
1、异常介绍 异常是程序执行期间发生的意外事件。它影响程序指令流,从而导致程序异常终止。 发生异常的原因有很多。其中包括: 无效的用户输入 设备故障 网络连接丢失 物理限制(磁盘内存不足) 代码错误 打开一个不可用的文…...
每日一题——旋转数组的最小数字
题目 有一个长度为 n 的非降序数组,比如[1,2,3,4,5],将它进行旋转,即把一个数组最开始的若干个元素搬到数组的末尾,变成一个旋转数组,比如变成了[3,4,5,1,2],或者[4,5,1,2,3]这样的。请问,给定这…...
SpringBoot Jackson 日期格式化统一配置
目录 1.在全局配置文件配置 2.通过JavaBean方式配置 1.在全局配置文件配置 spring:jackson:date-format: yyyy-MM-dd HH:mm:sstime-zone: GMT8 该配置方式仅支持 Date 类型的日期格式化,不支持LocalDate 及 LocalDateTime 的格式化。 2.通过JavaBean方式配置 …...
剑指 Offer 38. 字符串的排列 / LeetCode 47. 全排列 II(回溯法)
题目: 链接:剑指 Offer 38. 字符串的排列 难度:中等 输入一个字符串,打印出该字符串中字符的所有排列。 你可以以任意顺序返回这个字符串数组,但里面不能有重复元素。 示例: 输入:s “abc” 输出&…...

【前端知识】React 基础巩固(四十三)——Effect Hook
React 基础巩固(四十三)——Effect Hook 一、Effect Hook的基本使用 Effect Hook 用来完成一些类似class中生命周期的功能。 在使用类组件时,不管是渲染、网路请求还是操作DOM,其逻辑和代码是杂糅在一起的。例如我们希望把计数器结果显示在标签上&…...

一百三十八、ClickHouse——使用clickhouse-backup备份ClickHouse库表
一、目标 使用clickhouse-backup在本地全库备份ClickHouse的数据库 二、前提 已经安装好clickhouse-backup 注意:由于之前同事已经按照好clickhouse-backup,所以我就没有安装 如有需要请参考其他人的博客安装一下,下面是我认为比较好的一…...

【无标题】使用Debate Dynamics在知识图谱上进行推理(2020)7.31
使用Debate Dynamics在知识图谱上进行推理 摘要介绍背景与相关工作我们的方法 摘要 我们提出了一种新的基于 Debate Dynamics 的知识图谱自动推理方法。 其主要思想是将三重分类任务定义为两个强化学习主体之间的辩论游戏,这两个主体提取论点(知识图中…...
windows下若依vue项目部署
下载若依项目,前端后端项目本地启动前端打包,后端打包配置nginx.conf 需要注意的是:路径别用中文,要不然报错 #前台访问地址及端口80,在vue.config.js中可查看server {listen 80;server_name localhost; #后台…...

【目标检测】基于yolov5的水下垃圾检测(附代码和数据集,7684张图片)
写在前面: 首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就…...
P1734 最大约数和
题目描述 选取和不超过 S 的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大。 输入格式 输入一个正整数 S。 输出格式 输出最大的约数之和。 输入输出样例 输入 11 输出 9 说明/提示 【样例说明】 取数字 4 和 6&a…...
Excel将单元格中的json本文格式化
打开Excel文件并按下ALT F11打开Visual Basic for Applications(VBA)编辑器。 输入下面的代码 Sub FormatJSONCells()Dim cell As RangeDim jsonString As StringDim json As ObjectDim formattedJSON As String 循环遍历选定的单元格范围For Each ce…...

Baumer工业相机堡盟工业相机如何通过BGAPI SDK获取相机当前实时帧率(C#)
Baumer工业相机堡盟工业相机如何通过BGAPISDK里函数来计算相机的实时帧率(C#) Baumer工业相机Baumer工业相机的帧率的技术背景Baumer工业相机的帧率获取方式CameraExplorer如何查看相机帧率信息在BGAPI SDK里通过函数获取相机帧率 Baumer工业相机通过BGA…...
XGBoost的基础思想与实现
目录 1. XGBoost VS 梯度提升树 1.1 XGBoost实现精确性与复杂度之间的平衡 1.2 XGBoost极大程度地降低模型复杂度、提升模型运行效率 1.3 保留了部分与梯度提升树类似的属性 2. XGBoost回归的sklearnAPI实现 2.1 sklearn API 实现回归 2.2 sklearn API 实现分类 3. XGBo…...

【Docker】Docker的服务更新与发现
consul 一、服务注册与发现1. 服务注册与发现的概念2. 服务发现的机制二、consul 的概念1. 什么是 consul2. consul 的特性三、consul 的部署1. consul 服务器架构2. consul 的部署过程2.1 环境配置2.2 consul 服务器建立 Consul 服务查看集群信息通过 http api 获取集群信息2.…...

【Docker 学习笔记】Docker架构及三要素
文章目录 一、Docker 简介二、Docker 架构1. Docker 客户端和服务器2. Docker 架构图3. Docker 运行流程图 三、Docker 三要素1. 镜像(Image)2. 容器(Container)3. 仓库(Repository) 一、Docker 简介 Dock…...

matlab编程实践14、15
目录 数独 "四独"游戏 解的存在和唯一性 算法 常微分方程 数独 采用蛮力试凑法来解决数独问题。(采用单选数,以及计算机科学技术中的递推回溯法) 以上的数独是图14-2的两个矩阵的和,左侧的矩阵可以由kron和magic函…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...