当前位置: 首页 > news >正文

26 用lsqnonlin求解最小二乘问题(matlab程序)

1.简述

      

函数语法
x = lsqnonlin(fun,x0)
函数用于:

解决非线性最小二乘(非线性数据拟合)问题
解决非线性最小二乘曲线拟合问题的形式

变量x的约束上下限为ub和lb,

x = lsqnonlin(fun,x0)从x0点开始,找到fun中描述的函数的最小平方和。函数fun应该返回一个向量(或数组),而不是值的平方和。(该算法隐式地计算了fun(x)元素的平方和。)
 

2.代码

主程序:

%%  用lsqnonlin求解最小二乘问题
clear all
x0 = [0.3 0.4];                        % 初值点
[x,resnorm] = lsqnonlin(@f1211,x0)     % 调用最优化函数求  x  和  平方和残差

子程序:

function [xCurrent,Resnorm,FVAL,EXITFLAG,OUTPUT,LAMBDA,JACOB] = lsqnonlin(FUN,xCurrent,LB,UB,options,varargin)
%LSQNONLIN solves non-linear least squares problems.
%   LSQNONLIN attempts to solve problems of the form:
%   min  sum {FUN(X).^2}    where X and the values returned by FUN can be   
%    X                      vectors or matrices.
%
%   LSQNONLIN implements two different algorithms: trust region reflective
%   and Levenberg-Marquardt. Choose one via the option Algorithm: for
%   instance, to choose Levenberg-Marquardt, set 
%   OPTIONS = optimoptions('lsqnonlin', 'Algorithm','levenberg-marquardt'), 
%   and then pass OPTIONS to LSQNONLIN.
%    
%   X = LSQNONLIN(FUN,X0) starts at the matrix X0 and finds a minimum X to 
%   the sum of squares of the functions in FUN. FUN accepts input X 
%   and returns a vector (or matrix) of function values F evaluated
%   at X. NOTE: FUN should return FUN(X) and not the sum-of-squares 
%   sum(FUN(X).^2)). (FUN(X) is summed and squared implicitly in the
%   algorithm.) 
%
%   X = LSQNONLIN(FUN,X0,LB,UB) defines a set of lower and upper bounds on
%   the design variables, X, so that the solution is in the range LB <= X
%   <= UB. Use empty matrices for LB and UB if no bounds exist. Set LB(i)
%   = -Inf if X(i) is unbounded below; set UB(i) = Inf if X(i) is
%   unbounded above.
%
%   X = LSQNONLIN(FUN,X0,LB,UB,OPTIONS) minimizes with the default
%   optimization parameters replaced by values in OPTIONS, an argument
%   created with the OPTIMOPTIONS function. See OPTIMOPTIONS for details.
%   Use the SpecifyObjectiveGradient option to specify that FUN also
%   returns a second output argument J that is the Jacobian matrix at the
%   point X. If FUN returns a vector F of m components when X has length n,
%   then J is an m-by-n matrix where J(i,j) is the partial derivative of
%   F(i) with respect to x(j). (Note that the Jacobian J is the transpose
%   of the gradient of F.)
%
%   X = LSQNONLIN(PROBLEM) solves the non-linear least squares problem 
%   defined in PROBLEM. PROBLEM is a structure with the function FUN in 
%   PROBLEM.objective, the start point in PROBLEM.x0, the lower bounds in 
%   PROBLEM.lb, the upper bounds in PROBLEM.ub, the options structure in 
%   PROBLEM.options, and solver name 'lsqnonlin' in PROBLEM.solver. Use 
%   this syntax to solve at the command line a problem exported from 
%   OPTIMTOOL. 
%
%   [X,RESNORM] = LSQNONLIN(FUN,X0,...) returns 
%   the value of the squared 2-norm of the residual at X: sum(FUN(X).^2). 
%
%   [X,RESNORM,RESIDUAL] = LSQNONLIN(FUN,X0,...) returns the value of the 
%   residual at the solution X: RESIDUAL = FUN(X).
%
%   [X,RESNORM,RESIDUAL,EXITFLAG] = LSQNONLIN(FUN,X0,...) returns an
%   EXITFLAG that describes the exit condition. Possible values of EXITFLAG
%   and the corresponding exit conditions are listed below. See the
%   documentation for a complete description.
%
%     1  LSQNONLIN converged to a solution.
%     2  Change in X too small.
%     3  Change in RESNORM too small.
%     4  Computed search direction too small.
%     0  Too many function evaluations or iterations.
%    -1  Stopped by output/plot function.
%    -2  Bounds are inconsistent.
%
%   [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT] = LSQNONLIN(FUN,X0,...) returns a 
%   structure OUTPUT with the number of iterations taken in
%   OUTPUT.iterations, the number of function evaluations in
%   OUTPUT.funcCount, the algorithm used in OUTPUT.algorithm, the number
%   of CG iterations (if used) in OUTPUT.cgiterations, the first-order
%   optimality (if used) in OUTPUT.firstorderopt, and the exit message in
%   OUTPUT.message.
%
%   [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA] = LSQNONLIN(FUN,X0,...) 
%   returns the set of Lagrangian multipliers, LAMBDA, at the solution: 
%   LAMBDA.lower for LB and LAMBDA.upper for UB.
%
%   [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA,JACOBIAN] = LSQNONLIN(FUN,
%   X0,...) returns the Jacobian of FUN at X.   
%
%   Examples
%     FUN can be specified using @:
%        x = lsqnonlin(@myfun,[2 3 4])
%
%   where myfun is a MATLAB function such as:
%
%       function F = myfun(x)
%       F = sin(x);
%
%   FUN can also be an anonymous function:
%
%       x = lsqnonlin(@(x) sin(3*x),[1 4])
%
%   If FUN is parameterized, you can use anonymous functions to capture the 
%   problem-dependent parameters. Suppose you want to solve the non-linear 
%   least squares problem given in the function myfun, which is 
%   parameterized by its second argument c. Here myfun is a MATLAB file 
%   function such as
%
%       function F = myfun(x,c)
%       F = [ 2*x(1) - exp(c*x(1))
%             -x(1) - exp(c*x(2))
%             x(1) - x(2) ];
%
%   To solve the least squares problem for a specific value of c, first 
%   assign the value to c. Then create a one-argument anonymous function 
%   that captures that value of c and calls myfun with two arguments. 
%   Finally, pass this anonymous function to LSQNONLIN:
%
%       c = -1; % define parameter first
%       x = lsqnonlin(@(x) myfun(x,c),[1;1])
%
%   See also OPTIMOPTIONS, LSQCURVEFIT, FSOLVE, @, INLINE.

%   Copyright 1990-2018 The MathWorks, Inc.

% ------------Initialization----------------
defaultopt = struct(...
    'Algorithm','trust-region-reflective',...
    'DerivativeCheck','off',...
    'Diagnostics','off',...
    'DiffMaxChange',Inf,...
    'DiffMinChange',0,...
    'Display','final',...
    'FinDiffRelStep', [], ...
    'FinDiffType','forward',...
    'FunValCheck','off',...
    'InitDamping', 0.01, ...
    'Jacobian','off',...
    'JacobMult',[],... 
    'JacobPattern','sparse(ones(Jrows,Jcols))',...
    'MaxFunEvals',[],...
    'MaxIter',400,...
    'MaxPCGIter','max(1,floor(numberOfVariables/2))',...
    'OutputFcn',[],...
    'PlotFcns',[],...
    'PrecondBandWidth',Inf,...
    'ScaleProblem','none',...
    'TolFun', 1e-6,... 
    'TolFunValue', 1e-6, ...
    'TolPCG',0.1,...
    'TolX',1e-6,...
    'TypicalX','ones(numberOfVariables,1)',...
    'UseParallel',false );

% If just 'defaults' passed in, return the default options in X
if nargin==1 && nargout <= 1 && strcmpi(FUN,'defaults')
   xCurrent = defaultopt;
   return
end

if nargin < 5
    options = [];
    if nargin < 4
        UB = [];
        if nargin < 3
            LB = [];
        end
    end
end

problemInput = false;
if nargin == 1
    if isa(FUN,'struct')
        problemInput = true;
        [FUN,xCurrent,LB,UB,options] = separateOptimStruct(FUN);
    else % Single input and non-structure.
        error(message('optim:lsqnonlin:InputArg'));
    end
end

% No options passed. Set options directly to defaultopt after
allDefaultOpts = isempty(options);

% Prepare the options for the solver
options = prepareOptionsForSolver(options, 'lsqnonlin');

% Set options to default if no options were passed.
if allDefaultOpts
    % Options are all default
    options = defaultopt;
end

if nargin < 2 && ~problemInput
  error(message('optim:lsqnonlin:NotEnoughInputs'))
end

% Check for non-double inputs
msg = isoptimargdbl('LSQNONLIN', {'X0','LB','UB'}, ...
                               xCurrent,LB,  UB);
if ~isempty(msg)
    error('optim:lsqnonlin:NonDoubleInput',msg);
end

caller = 'lsqnonlin'; 
[funfcn,mtxmpy,flags,sizes,~,xstart,lb,ub,EXITFLAG,Resnorm,FVAL,LAMBDA, ...
    JACOB,OUTPUT,earlyTermination] = lsqnsetup(FUN,xCurrent,LB,UB,options,defaultopt, ...
    allDefaultOpts,caller,nargout,length(varargin));
if earlyTermination
    return % premature return because of problem detected in lsqnsetup()
end

xCurrent(:) = xstart; % reshape back to user shape before evaluation
% Catch any error in user objective during initial evaluation only
switch funfcn{1}
    case 'fun'
        try
            initVals.F = feval(funfcn{3},xCurrent,varargin{:});
        catch userFcn_ME
            optim_ME = MException('optim:lsqnonlin:InvalidFUN', ...
                getString(message('optim:lsqnonlin:InvalidFUN')));
            userFcn_ME = addCause(userFcn_ME,optim_ME);
            rethrow(userFcn_ME)
        end
        initVals.J = [];
    case 'fungrad'
        try
            [initVals.F,initVals.J] = feval(funfcn{3},xCurrent,varargin{:});
        catch userFcn_ME
            optim_ME = MException('optim:lsqnonlin:InvalidFUN', ...
                getString(message('optim:lsqnonlin:InvalidFUN')));
            userFcn_ME = addCause(userFcn_ME,optim_ME);
            rethrow(userFcn_ME)
        end
    case 'fun_then_grad'
        try
            initVals.F = feval(funfcn{3},xCurrent,varargin{:});
        catch userFcn_ME
            optim_ME = MException('optim:lsqnonlin:InvalidFUN', ...
                getString(message('optim:lsqnonlin:InvalidFUN')));
            userFcn_ME = addCause(userFcn_ME,optim_ME);
            rethrow(userFcn_ME)
        end
        try    
            initVals.J = feval(funfcn{4},xCurrent,varargin{:});
        catch userFcn_ME
            optim_ME = MException('optim:lsqnonlin:InvalidFUN', ...
                getString(message('optim:lsqnonlin:InvalidJacobFun')));
            userFcn_ME = addCause(userFcn_ME,optim_ME);
            rethrow(userFcn_ME)
        end
    otherwise
        error(message('optim:lsqnonlin:UndefCallType'))
end

% Check for non-double data typed values returned by user functions 
if ~isempty( isoptimargdbl('LSQNONLIN', {'F','J'}, initVals.F, initVals.J) )
    error('optim:lsqnonlin:NonDoubleFunVal',getString(message('optimlib:commonMsgs:NonDoubleFunVal','LSQNONLIN')));
end

% Flag to determine whether to look up the exit msg.
flags.makeExitMsg = logical(flags.verbosity) || nargout > 4;

[xCurrent,Resnorm,FVAL,EXITFLAG,OUTPUT,LAMBDA,JACOB] = ...
   lsqncommon(funfcn,xCurrent,lb,ub,options,defaultopt,allDefaultOpts,caller,...
              initVals,sizes,flags,mtxmpy,varargin{:});
          

3.运行结果

 

相关文章:

26 用lsqnonlin求解最小二乘问题(matlab程序)

1.简述 函数语法 x lsqnonlin(fun,x0) 函数用于&#xff1a; 解决非线性最小二乘(非线性数据拟合)问题 解决非线性最小二乘曲线拟合问题的形式 变量x的约束上下限为ub和lb&#xff0c; x lsqnonlin(fun,x0)从x0点开始&#xff0c;找到fun中描述的函数的最小平方和。函数fu…...

Verilog语法学习——LV6_多功能数据处理器

LV6_多功能数据处理器 题目来源于牛客网 [牛客网在线编程_Verilog篇_Verilog快速入门 (nowcoder.com)](https://www.nowcoder.com/exam/oj?page1&tabVerilog篇&topicId301) 题目 描述 根据指示信号select的不同&#xff0c;对输入信号a,b实现不同的运算。输入信号a…...

发送信息----策略模式

发送信息----策略模式 发送信息 发送信息 发送信息到手机、邮箱等&#xff0c;可扩展 package mainimport ("errors""fmt" )type PushContext struct {Phone, Email, Message stringTage int }type PaymentStrategy interface {Push(*P…...

PySpark介绍与安装

Spark是什么 定义&#xff1a;Apache Spark是用于大规模数据&#xff08;large-scala data&#xff09;处理的统一&#xff08;unified&#xff09;分析引擎。 简单来说&#xff0c;Spark是一款分布式的计算框架&#xff0c;用于调度成百上千的服务器集群&#xff0c;计算TB、…...

细讲TCP三次握手四次挥手(三)

TCP/IP 协议族 在互联网使用的各种协议中最重要和最著名的就是 TCP/IP 两个协议。现在人们经常提到的 TCP/IP 并不一定是单指 TCP 和 IP 这两个具体的协议&#xff0c;而往往是表示互联网所使用的整个 TCP/IP 协议族。 互联网协议套件&#xff08;英语&#xff1a;Internet Pr…...

vue 组件中 data 为什么必须是函数

在Vue组件中&#xff0c;data选项为什么必须是函数而不是对象的原因是为了确保每个组件实例都拥有独立的数据副本。 当data选项是一个对象时&#xff0c;如果你有多个相同组件的实例&#xff0c;它们会共享同一个对象引用&#xff0c;这意味着一个组件的数据变化会影响到其他相…...

从零开始学python(十二)如何成为一名优秀的爬虫工程师

前言 回顾之前讲述了python语法编程 必修入门基础和网络编程&#xff0c;多线程/多进程/协程等方面的内容&#xff0c;后续讲到了数据库编程篇MySQL&#xff0c;Redis&#xff0c;MongoDB篇&#xff0c;和机器学习&#xff0c;全栈开发&#xff0c;数据分析前面没看的也不用往…...

为高性能计算构建,由亚马逊云科技Amazon Graviton3E驱动的最新实例正式可用

亚马逊云科技宣布两款基于最新一代自研芯片Amazon Graviton3E的新实例Amazon Elastic Compute Cloud&#xff08;Amazon EC2&#xff09;Hpc7g和Amazon EC2 C7gn正式可用。 其中&#xff0c;Hpc7g实例专为计算和网络密集型高性能计算&#xff08;HPC&#xff09;工作负载而构建…...

BUUCTF题目Crypto部分wp(持续更新)

Url编码 题目密文是%66%6c%61%67%7b%61%6e%64%20%31%3d%31%7d&#xff0c;根据题目名字使用python的urllib模块解码即可。flag{and 11} from urllib.parse import quote, unquotec r%66%6c%61%67%7b%61%6e%64%20%31%3d%31%7d m unquote(c, encodingutf-8) print(m)c2 quot…...

A Generalized Loss Function for Crowd Counting and Localization阅读笔记

简单来说&#xff0c;就是用了UOT来解决人群计数问题 代码&#xff1a;https://github.com/jia-wan/GeneralizedLoss-Counting-Pytorch.git 我改了一点的&#xff1a;https://github.com/Nightmare4214/GeneralizedLoss-Counting-Pytorch.git loss 设density map为 A { ( a…...

SocketD协议单链接双向RPC模式怎么实现

SocketD是一个基于Socket的通信框架&#xff0c;支持单链接双向RPC模式。在实现单链接双向RPC模式时&#xff0c;需要按照一定的协议进行通信&#xff0c;以下是一个简单的实现示例&#xff1a; 定义通信协议&#xff1a;首先&#xff0c;需要定义客户端和服务端之间的通信协议…...

apache poi 设置背景颜色

apache poi 设置背景颜色 要设置 Apache POI 中 HSSFCellStyle 的背景颜色&#xff0c;你可以按照以下步骤进行操作&#xff1a; 首先&#xff0c;创建一个 HSSFWorkbook 对象来表示你的 Excel 工作簿&#xff1a; HSSFWorkbook workbook new HSSFWorkbook();然后&#xff…...

Vue2-Vue3组件间通信-EventBus方式-函数封装

Vue3中采用EventBus方式进行组件间通信与Vue2有一定区别 1.创建EventBus 在Vue2中&#xff0c;我们可以在main.js中创建一个全局的EventBus&#xff0c;代码如下&#xff1a; // EventBus.js import Vue from vue const EventBus new Vue() export default EventBus// main.…...

【SpringBoot】| SpringBoot 和 web组件

目录 一&#xff1a;SpringBoot 和 web组件 1. SpringBoot中使用拦截器&#xff08;重点&#xff09; 2. SpringBoot中使用Servlet 3. SpringBoot中使用过滤器&#xff08;重点&#xff09; 4. 字符集过滤器的应用 一&#xff1a;SpringBoot 和 web组件 1. SpringBoot中使…...

dflow工作流使用1——架构和基本概念

对于容器技术、工作流等概念完全不懂的情况下理解dflow的工作方式会很吃力&#xff0c;这里记录一下个人理解。 dflow涉及的基本概念 工作流的概念很好理解&#xff0c;即某个项目可以分为多个步骤&#xff0c;每个步骤可以实现独立运行&#xff0c;只保留输入输出接口&#x…...

python小游戏课程设计报告,python游戏课程设计报告

大家好&#xff0c;给大家分享一下python2048游戏课程设计报告&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01;...

使用Windbg分析从系统应用程序日志中找到的系统自动生成的dump文件去排查问题

目录 1、尝试将Windbg附加到目标进程上进行动态调试&#xff0c;但Windbg并没有捕获到 2、在系统应用程序日志中找到了系统在程序发生异常时自动生成的dump文件 2.1、查看应用程序日志的入口 2.2、在应用程序日志中找到系统自动生成的dump文件 3、使用Windbg静态分析dump文…...

后端技术趋势指南|如何选择自己的技术方向

编程多条路&#xff0c;条条通罗马 后台大佬 后台路线都是面对后台服务器业务&#xff0c;比如web后台服务器&#xff0c;视频后台服务器&#xff0c;搜索后台服务器&#xff0c;游戏后台服务器&#xff0c;直播后台服务器&#xff0c;社交IM后台服务器等等&#xff0c;大部分…...

Delphi XE的原生JSONObject如何判断键值是否存在?

【问题现象】 Delphi XE的原生JSONObject&#xff0c;取出键值的时候如下&#xff1a; //json是传入的参数&#xff0c;里面包括"food_name"等之类的键值&#xff0c;没有food_type键值 procedure XXXXFunciton(json:TJSONObject) var strFoodName,strFoodType:S…...

Go Runtime功能初探

以下内容&#xff0c;是对 运行时 runtime的神奇用法[1] 的学习与记录 目录: 1.获取GOROOT环境变量 2.获取GO的版本号 3.获取本机CPU个数 4.设置最大可同时执行的最大CPU数 5.设置cup profile 记录的速录 6.查看cup profile 下一次堆栈跟踪数据 7.立即执行一次垃圾回收 8.给变量…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...