当前位置: 首页 > news >正文

A Generalized Loss Function for Crowd Counting and Localization阅读笔记

简单来说,就是用了UOT来解决人群计数问题

代码:https://github.com/jia-wan/GeneralizedLoss-Counting-Pytorch.git
我改了一点的:https://github.com/Nightmare4214/GeneralizedLoss-Counting-Pytorch.git

loss

设density map为 A = { ( a i , x i ) } i = 1 n \mathcal{A} =\left\{\left(a_i, \mathbf{x}_i\right)\right\}_{i=1}^{n} A={(ai,xi)}i=1n
其中 a i a_i ai为预测density, x i ∈ R n \mathbf{x}_i\in\mathbb{R}^n xiRn为坐标, n n n为像素个数
a = [ a i ] i \mathbf{a} = \left[a_i\right]_i a=[ai]i,也就是density map转成列向量

真实点图为 B = { ( b j , y j ) } j = 1 m \mathcal{B}=\left\{\left(b_j,\mathbb{y}_j\right)\right\}_{j=1}^m B={(bj,yj)}j=1m
其中 y j \mathbf{y}_j yj为坐标, m m m为标注点个数, b j b_j bj为这个点代表的人群数量
这个论文假设 b = [ b j ] j = 1 m \mathbf{b}=\left[b_j\right]_j = \mathbf{1}_m b=[bj]j=1m,也就是说每个点只有一个人

熵正则化的UOT为
L C τ ( A , B ) = min ⁡ P ∈ R + n × m ⟨ C , P ⟩ − ϵ H ( P ) + τ D 1 ( P 1 m ∣ a ) + τ D 2 ( P T 1 n ∣ b ) \mathcal{L}_{\mathbf{C}}^{\tau}\left(\mathcal{A},\mathcal{B}\right) = \min_{\mathbf{P}\in\mathbb{R}_+^{n\times m}} \left\langle \mathbf{C},\mathbf{P}\right\rangle -\epsilon H\left(\mathbf{P}\right) + \tau D_1\left(\mathbf{P}\mathbf{1}_m|\mathbf{a}\right) +\tau D_2\left(\mathbf{P}^T\mathbf{1}_n|\mathbf{b}\right) LCτ(A,B)=PR+n×mminC,PϵH(P)+τD1(P1ma)+τD2(PT1nb)
其中 C ∈ R + n × m \mathbf{C}\in\mathbb{R}_+^{n\times m} CR+n×m是传输代价矩阵, C i , j C_{i,j} Ci,j为将density从 x i \mathbf{x}_i xi搬运到 y j \mathbf{y}_j yj的距离
P \mathbf{P} P为传输矩阵
a ^ = P 1 m , b ^ = P T 1 n \hat{\mathbf{a}} = \mathbf{P}\mathbf{1}_m, \hat{\mathbf{b}}=\mathbf{P}^T\mathbf{1}_n a^=P1m,b^=PT1n

这个loss有4个部分
第一部分是传输的loss,目的是将预测的density map往真实标注靠
第二部分是熵 H ( P ) = − ∑ i , j P i , j log ⁡ P i , j H\left(\mathbf{P}\right) = -\sum_{i,j}P_{i,j}\log P_{i,j} H(P)=i,jPi,jlogPi,j是熵正则化项,用来控制稀疏程度,越大越稀疏(会趋于均匀分布),反之亦然

第三部分就是希望 a ^ \hat{\mathbf{a}} a^靠近 a \mathbf{a} a
第四部分就是希望 b ^ \hat{\mathbf{b}} b^靠近 b \mathbf{b} b

论文里, D 1 D_1 D1 L 2 L_2 L2的平方
D 2 D_2 D2 L 1 L_1 L1

代价矩阵

C i , j = e 1 η ( x i , y j ) ∥ x i − y j ∥ 2 C_{i,j} = e^{\frac{1}{\eta\left(x_i,y_j\right)}\|\mathbf{x}_i-\mathbf{y}_j\|_2} Ci,j=eη(xi,yj)1xiyj2
这里的 x i , y j \mathbf{x}_i,\mathbf{y}_j xi,yj是经过归一化的
不过要注意,代码里这个 η ( x i , y j ) \eta\left(x_i,y_j\right) η(xi,yj)是常数,默认是 0.6 0.6 0.6

求解

采用的是sinkhorn
P = diag ⁡ ( u ) K diag ⁡ ( v ) , K = exp ⁡ ( − C / ε ) \mathbf{P}=\operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}), \quad \mathbf{K}=\exp (-\mathbf{C} / \varepsilon) P=diag(u)Kdiag(v),K=exp(C/ε)
这里近似 D 1 , D 2 D_1,D_2 D1,D2为KL散度,这样的话有高效的解法
u ( ℓ + 1 ) = ( a K v ( ℓ ) ) τ τ + ϵ , v ( ℓ + 1 ) = ( b K ⊤ u ( ℓ + 1 ) ) τ τ + ϵ \mathbf{u}^{(\ell+1)}=\left(\frac{\boldsymbol{a}}{\mathbf{K} \mathbf{v}^{(\ell)}}\right)^{\frac{\tau}{\tau+\epsilon}}, \quad \mathbf{v}^{(\ell+1)}=\left(\frac{\boldsymbol{b}}{\mathbf{K}^{\top} \mathbf{u}^{(\ell+1)}}\right)^{\frac{\tau}{\tau+\epsilon}} u(+1)=(Kv()a)τ+ϵτ,v(+1)=(Ku(+1)b)τ+ϵτ

(其实即使是 K L KL KL散度,他代码似乎也不能这么写)

代码

数据集

预处理

用的是UCF-QNRF

预处理:
1.让 h , w h,w h,w中较小的那个,处于 [ 512 , 2048 ] \left[512,2048\right] [512,2048]的范围,另一个按照缩放比例调整
2.过滤不在图片中的点
3.额外计算每个点到其他点的一个距离,具体地
P = ( p 1 T p 2 T ⋮ p m T ) , p i ∈ R 2 \mathbf{P} = \begin{pmatrix} \mathbf{p}_1^T\\ \mathbf{p}_2^T\\ \vdots\\ \mathbf{p}_m^T \end{pmatrix},\quad \mathbf{p}_i\in\mathbb{R}^2 P= p1Tp2TpmT ,piR2
d i s = [ ∥ p i − p j ∥ ] i , j \mathbf{dis} = \left[\|\mathbf{p}_i-\mathbf{p}_j\|\right]_{i,j} dis=[pipj]i,j

最后对每一行进行快排的那个选择哨兵的过程,找到第3个(从0开始数)
对第 1 , 2 , 3 1,2,3 1,2,3个元素取平均(从0开始数)

def find_dis(point):a = point[:, None, :]b = point[None, ...]dis = np.linalg.norm(a - b, ord=2, axis=-1)  # dis_{i,j} = ||p_i - p_j||# mean(4th_min, 2 of the [1st_min, 2nd_min, 3rd_min])dis = np.mean(np.partition(dis, 3, axis=1)[:, 1:4], axis=1, keepdims=True)return dis

因此得到的标签为
P = [ ( x i , y i , d i s i ) ] i ∈ R m × 3 \mathbf{P}=\left[\left(x_i,y_i,dis_i\right)\right]_i\in\mathbb{R}^{m\times 3} P=[(xi,yi,disi)]iRm×3

读取数据

随机裁剪图片,到 ( 512 , 512 ) \left(512,512\right) (512,512)
i , j i,j i,j为裁剪的左上角坐标, h = w = 512 h=w=512 h=w=512

接着读取标签
根据 d i s dis dis来设定一个小矩形
计算这个矩形在裁剪范围的面积,和矩形面积的 1 4 \frac{1}{4} 41
如果这个比例大于0.3,就选择这个点,否则舍弃
在这里插入图片描述
然后其他的就是随机水平翻转

模型

vgg19+上采样+两层卷积+abs

训练

注意这里sinkhorn是有 ϵ − scaling heuristic \epsilon-\text{scaling heuristic} ϵscaling heuristic的这样可以做到20轮以内收敛
为了数值稳定,还用了 log-domain \text{log-domain} log-domain

结果

在这里插入图片描述

作者的提供的模型的结果:mae 85.09911092883813, mse 150.88815648865386
我在UCF-QNRF跑的结果:mae:85.69232401590861, mse:155.30853159819492

相关文章:

A Generalized Loss Function for Crowd Counting and Localization阅读笔记

简单来说,就是用了UOT来解决人群计数问题 代码:https://github.com/jia-wan/GeneralizedLoss-Counting-Pytorch.git 我改了一点的:https://github.com/Nightmare4214/GeneralizedLoss-Counting-Pytorch.git loss 设density map为 A { ( a…...

SocketD协议单链接双向RPC模式怎么实现

SocketD是一个基于Socket的通信框架,支持单链接双向RPC模式。在实现单链接双向RPC模式时,需要按照一定的协议进行通信,以下是一个简单的实现示例: 定义通信协议:首先,需要定义客户端和服务端之间的通信协议…...

apache poi 设置背景颜色

apache poi 设置背景颜色 要设置 Apache POI 中 HSSFCellStyle 的背景颜色,你可以按照以下步骤进行操作: 首先,创建一个 HSSFWorkbook 对象来表示你的 Excel 工作簿: HSSFWorkbook workbook new HSSFWorkbook();然后&#xff…...

Vue2-Vue3组件间通信-EventBus方式-函数封装

Vue3中采用EventBus方式进行组件间通信与Vue2有一定区别 1.创建EventBus 在Vue2中,我们可以在main.js中创建一个全局的EventBus,代码如下: // EventBus.js import Vue from vue const EventBus new Vue() export default EventBus// main.…...

【SpringBoot】| SpringBoot 和 web组件

目录 一:SpringBoot 和 web组件 1. SpringBoot中使用拦截器(重点) 2. SpringBoot中使用Servlet 3. SpringBoot中使用过滤器(重点) 4. 字符集过滤器的应用 一:SpringBoot 和 web组件 1. SpringBoot中使…...

dflow工作流使用1——架构和基本概念

对于容器技术、工作流等概念完全不懂的情况下理解dflow的工作方式会很吃力,这里记录一下个人理解。 dflow涉及的基本概念 工作流的概念很好理解,即某个项目可以分为多个步骤,每个步骤可以实现独立运行,只保留输入输出接口&#x…...

python小游戏课程设计报告,python游戏课程设计报告

大家好,给大家分享一下python2048游戏课程设计报告,很多人还不知道这一点。下面详细解释一下。现在让我们来看看!...

使用Windbg分析从系统应用程序日志中找到的系统自动生成的dump文件去排查问题

目录 1、尝试将Windbg附加到目标进程上进行动态调试,但Windbg并没有捕获到 2、在系统应用程序日志中找到了系统在程序发生异常时自动生成的dump文件 2.1、查看应用程序日志的入口 2.2、在应用程序日志中找到系统自动生成的dump文件 3、使用Windbg静态分析dump文…...

后端技术趋势指南|如何选择自己的技术方向

编程多条路,条条通罗马 后台大佬 后台路线都是面对后台服务器业务,比如web后台服务器,视频后台服务器,搜索后台服务器,游戏后台服务器,直播后台服务器,社交IM后台服务器等等,大部分…...

Delphi XE的原生JSONObject如何判断键值是否存在?

【问题现象】 Delphi XE的原生JSONObject,取出键值的时候如下: //json是传入的参数,里面包括"food_name"等之类的键值,没有food_type键值 procedure XXXXFunciton(json:TJSONObject) var strFoodName,strFoodType:S…...

Go Runtime功能初探

以下内容,是对 运行时 runtime的神奇用法[1] 的学习与记录 目录: 1.获取GOROOT环境变量 2.获取GO的版本号 3.获取本机CPU个数 4.设置最大可同时执行的最大CPU数 5.设置cup profile 记录的速录 6.查看cup profile 下一次堆栈跟踪数据 7.立即执行一次垃圾回收 8.给变量…...

01|Oracle学习(监听程序、管理工具、PL/SQL Developer、本地网络服务介绍)

基础概念 监听程序:运行在Oracle服务器端用于侦听客户端请求的程序。 相当于保安,你来找人,他会拦你,问你找谁。他去帮你叫人过来。 配置监听程序应用场景 Oracle数据库软件安装之后没有监听程序(服务)…...

滴滴数据服务体系建设实践

什么是数据服务化 大数据开发的主要流程分为数据集成、数据开发、数据生产和数据回流四个阶段。数据集成打通了业务系统数据进入大数据环境的通道,通常包含周期性导入离线表、实时采集并清洗导入离线表和实时写入对应数据源三种方式,当前滴滴内部同步中心…...

VBA技术资料MF36:VBA_在Excel中排序

【分享成果,随喜正能量】一个人的气质,并不在容颜和身材,而是所经历过的往事,是内在留下的印迹,令人深沉而安谧。所以,优雅是一种阅历的凝聚;淡然是一段人生的沉淀。时间会让一颗灵魂&#xff0…...

Shell脚本学习3

文章目录 Shell脚本学习3函数函数定义及使用函数参数获取函数返回值 重定向输入输出重定向 其他Here Document/dev/null 文件Shell文件包含获取当前正在执行脚本的绝对路径按特定字符串截取字符串 Shell脚本学习3 函数 函数定义及使用 函数可以让我们将一个复杂功能划分成若…...

代理模式--静态代理和动态代理

1.代理模式 定义:代理模式就是代替对象具备真实对象的功能,并代替真实对象完成相应的操作并且在不改变真实对象源代码的情况下扩展其功能,在某些情况下,⼀个对象不适合或者不能直接引⽤另⼀个对象,⽽代理对象可以在客户…...

C++容器——list的模拟实现

目录 一.list的基本结构 二. 接下来就是对list类构造函数的设计了: 三.链表数据的增加: 四.接下来就是迭代器的创建了: 四.简单函数的实现: 五.构造与析构 六.拷贝构造和赋值重载 传统写法: 现代写法: 七.迭…...

VUE3 祖孙组件传值调用方法

1.在 Vue 3 中,你可以使用 provide/inject 来实现祖孙组件之间的传值和调用方法。 首先,在祖组件中使用 provide 来提供数据或方法,例如: // 祖组件 import { provide } from vue;export default {setup() {const data Hello;c…...

我的网安之路

机缘 我目前从事网安工作,一转眼我从发布的第一篇文章到现在已经过去了4年了,感慨时间过得很快 曾经我是一名Java开发工程师所以我的第一篇文章是跟开发相关的那个时候还是实习生被安排 一个很难的工作是完成地图实时定位以及根据GPS信息模拟海上追捕,这对刚入职的我来说很难 …...

langchain-ChatGLM源码阅读:webui.py

样式定制 使用gradio设置页面的视觉组件和交互逻辑 import gradio as gr import shutilfrom chains.local_doc_qa import LocalDocQA from configs.model_config import * import nltk import models.shared as shared from models.loader.args import parser from models.load…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...