当前位置: 首页 > news >正文

组合模式——树形结构的处理

1、简介

1.1、概述

树形结构在软件中随处可见,例如操作系统中的目录结构、应用软件中的菜单、办公系统中的公司组织结构等。如何运用面向对象的方式来处理这种树形结构是组合模式需要解决的问题。组合模式通过一种巧妙的设计方案使得用户可以一致性地处理整个树形结构或者树形结构的一部分,也可以一致性地处理树形结构中的叶子节点(不包含子节点的节点)和容器节点(包含子节点的节点)。

对于树形结构,当容器对象(例如文件夹)的某一个方法被调用时,将遍历整个树形结构,寻找也包含这个方法的成员对象(可以是容器对象,也可以是叶子对象)并调用执行,牵一而动百,其中使用了递归调用的机制来对整个结构进行处理。由于容器对象和叶子对象在功能上的区别,在使用这些对象的代码中必须有区别地对待容器对象和叶子对象,而实际上大多数情况下希望一致地处理它们,因为对于这些对象的区别对待将会使得程序非常复杂。组合模式为解决此类问题而诞生,它可以让叶子对象和容器对象的使用具有一致性。

1.2、定义

组合多个对象形成树形结构以表示具有“部分—整体”关系的层次结构。组合模式对单个对象(即叶子对象)和组合对象(即容器对象)的使用具有一致性,又可以称为“部分—整体”(Part-Whole)模式,它是一种对象结构型模式。

2、解析

在组合模式中引入了抽象构件类Component,它是所有容器类和叶子类的公共父类,客户端针对Component进行编程。

2.1、UML类图

在这里插入图片描述
可以看出,在组合模式结构图中包含以下3个角色:

  1. Component(抽象构件):它可以是接口或抽象类,为叶子构件和容器构件对象声明接口,在该角色中可以包含所有子类共有行为的声明和实现。在抽象构件中定义了访问及管理它的子构件的方法,例如增加子构件、删除子构件、获取子构件等。
  2. Leaf(叶子构件):它在组合模式结构中表示叶子节点对象。叶子节点没有子节点,它实现了在抽象构件中定义的行为。对于那些访问及管理子构件的方法,可以通过捕获异常等方式进行处理。
  3. Composite(容器构件):它在组合模式结构中表示容器节点对象。容器节点包含子节点,其子节点可以是叶子节点,也可以是容器节点。它提供一个集合用于存储子节点,实现了在抽象构件中定义的行为,包括那些访问及管理子构件的方法,在其业务方法中可以递归调用其子节点的业务方法。

组合模式的关键是定义了一个抽象构件类,它既可以代表叶子,又可以代表容器。客户端针对该抽象构件类进行编程,无须知道它到底表示的是叶子还是容器,可以对其进行统一处理。同时容器对象与抽象构件类之间还建立一个聚合关联关系,在容器对象中既可以包含叶子,也可以包含容器,以此实现递归组合,形成一个树形结构。

如果不使用组合模式,客户端代码将过多地依赖于容器对象复杂的内部实现结构。容器对象内部实现结构的变化将引起客户代码的频繁变化,从而带来了代码维护复杂、可扩展性差等弊端。组合模式的引入将在一定程度上解决这些问题。

2.2、代码示例

对于组合模式中的抽象构件角色,其典型代码如下:

abstract class Component {// 添加成员public abstract void add(Component component);// 删除成员public abstract void remove(Component component);// 获取成员public abstract Component getChild(int i);// 业务方法public abstract void operation();
}

一般将抽象构件类设计为接口或抽象类,将所有子类共有方法的声明和实现放在抽象构件类中。对于客户端而言,将针对抽象构件编程,而无须关心其具体子类是容器构件还是叶子构件。

如果继承抽象构件的是叶子构件,则其典型代码如下:

public class Leaf extends Component{@Overridepublic void add(Component component) {// 异常处理或错误提示}@Overridepublic void remove(Component component) {// 异常处理或错误提示}@Overridepublic Component getChild(int i) {// 异常处理或错误提示return null;}@Overridepublic void operation() {// 叶子构件具体业务方法的实现}
}

作为抽象构件类的子类,在叶子构件中需要实现在抽象构件类中声明的所有方法,包括业务方法以及管理和访问子构件的方法。由于叶子构件不能再包含子构件,因此在叶子构件中实现子构件管理和访问方法时需要提供异常处理或错误提示。当然,这无疑会给叶子构件的实现带来麻烦。

如果继承抽象构件的是容器构件,则其典型代码如下:

public class Composite  extends Component{private ArrayList<Component> list= new ArrayList<>();@Overridepublic void add(Component component) {list.add(component);}@Overridepublic void remove(Component component) {list.remove(component);}@Overridepublic Component getChild(int i) {return list.get(i);}@Overridepublic void operation() {// 容器构件具体业务方法的实现// 递归调用成员构件的业务方法for(Component component:list){component.operation();}}
}

在容器构件中实现了在抽象构件中声明的所有方法,既包括业务方法,也包括用于访问和管理成员子构件的方法,例如add()、remove()和getChild()等方法。需要注意的是在实现具体业务方法时,由于容器构件充当的是容器角色,包含成员构件,因此它将调用其成员构件的业务方法。在组合模式结构中,由于容器构件中仍然可以包含容器构件,因此在对容器构件进行处理时需要使用递归算法,即在容器构件的operation()方法中递归调用其成员构件的operation()方法。

3、透明组合模式与安全组合模式

3.1、透明组合模式

透明组合模式中,抽象构件Component中声明了所有用于管理成员对象的方法,包括add()、remove()以及getChild()等方法,这样做的好处是确保所有的构件类都有相同的接口。在客户端看来,叶子对象与容器对象所提供的方法是一致的,客户端可以相同地对待所有的对象。透明组合模式也是组合模式的标准形式,其完整结构如图所示:
在这里插入图片描述
透明组合模式的缺点是不够安全,因为叶子对象和容器对象在本质上是有区别的。叶子对象不可能有下一个层次的对象,即不可能包含成员对象,因此为其提供add()、remove()以及getChild()等方法是没有意义的,这在编译阶段不会出错,但在运行阶段如果调用这些方法可能会出错(如果没有提供相应的错误处理代码)。

3.2、安全组合模式

安全组合模式中,在抽象构件Component中没有声明任何用于管理成员对象的方法,而是在Composite类中声明并实现这些方法。这种做法是安全的,因为根本不向叶子对象提供这些管理成员对象的方法,对于叶子对象,客户端不可能调用到这些方法。安全组合模式的结构如图所示:
在这里插入图片描述
安全组合模式的缺点是不够透明。因为叶子构件和容器构件具有不同的方法,且容器构件中那些用于管理成员对象的方法没有在抽象构件类中定义,因此客户端不能完全针对抽象编程,必须有区别地对待叶子构件和容器构件。在实际应用中,安全组合模式的使用频率也非常高,在Java AWT中使用的组合模式就是安全组合模式。

4、总结

组合模式使用面向对象的思想来实现树形结构的构建与处理,描述了如何将容器对象和叶子对象进行递归组合,实现简单,灵活性好。由于在软件开发中存在大量的树形结构,因此组合模式是一种使用频率较高的结构型设计模式。Java SE中的AWT和Swing包的设计就基于组合模式,在这些界面包中为用户提供了大量的容器构件(例如Container)和成员构件(例如Checkbox、Button和TextComponent等),其结构如图所示:
在这里插入图片描述
Component类是抽象构件,Checkbox、Button和TextComponent是叶子构件,而Container是容器构件。在AWT中包含的叶子构件还有很多,因为篇幅限制没有在图中一一列出。在一个容器构件中可以包含叶子构件,也可以继续包含容器构件,这些叶子构件和容器构件一起组成了复杂的GUI(Graphical User Interface,图形用户界面)。

除此以外,在XML解析、组织结构树处理、文件系统设计等领域,组合模式都得到了广泛应用。

4.1、主要优点

  1. 组合模式可以清楚地定义分层次的复杂对象,表示对象的全部或部分层次。它让客户端忽略了层次的差异,方便对整个层次结构进行控制。
  2. 客户端可以一致地使用一个组合结构或其中单个对象,不必关心处理的是单个对象还是整个组合结构,简化了客户端代码。
  3. 在组合模式中增加新的容器构件和叶子构件都很方便,无须对现有类库进行任何修改,符合开闭原则。
  4. 组合模式为树形结构的面向对象实现提供了一种灵活的解决方案。通过叶子对象和容器对象的递归组合,可以形成复杂的树形结构,但对树形结构的控制却非常简单。

4.2、主要缺点

在增加新构件时很难对容器中的构件类型进行限制。有时希望一个容器中只能有某些特定类型的对象,例如在某个文件夹中只能包含文本文件。使用组合模式时,不能依赖类型系统来施加这些约束,因为它们都来自相同的抽象层。在这种情况下,必须通过在运行时进行类型检查来实现,这个实现过程较为复杂。

4.3、适用场景

(1)在具有整体和部分的层次结构中,希望通过一种方式忽略整体与部分的差异,客户端可以一致性地对待它们。

(2)在一个使用面向对象语言开发的系统中需要处理一个树形结构。

(3)在一个系统中能够分离出叶子对象和容器对象,而且它们的类型不固定,将来需要增加一些新的类型。

相关文章:

组合模式——树形结构的处理

1、简介 1.1、概述 树形结构在软件中随处可见&#xff0c;例如操作系统中的目录结构、应用软件中的菜单、办公系统中的公司组织结构等。如何运用面向对象的方式来处理这种树形结构是组合模式需要解决的问题。组合模式通过一种巧妙的设计方案使得用户可以一致性地处理整个树形…...

从实体按键看 Android 车载的自定义事件机制

作者&#xff1a;TechMerger 在汽车数字化、智能化变革的进程中&#xff0c;越来越多的车机设计或部分、或全部地舍弃了实体按键&#xff0c;进而把车主操作的入口转移到了车机 UI 以及语音助手。 但统一、高效的零层级 UI 颇为困难&#xff0c;语音的准确率、覆盖率亦不够完善…...

nosql之redis集群

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 一、redis集群1.单节点redis服务器带来的问题2.集群redis3.集群的优势4.redis集群的实现方法5.redis群集的三种模式5.1 主从复制5.2 哨兵5.3 集群 二、Redis 主从复…...

SpringBoot 项目使用 Redis 对用户 IP 进行接口限流

一、思路 使用接口限流的主要目的在于提高系统的稳定性&#xff0c;防止接口被恶意打击&#xff08;短时间内大量请求&#xff09;。 比如要求某接口在1分钟内请求次数不超过1000次&#xff0c;那么应该如何设计代码呢&#xff1f; 下面讲两种思路&#xff0c;如果想看代码可…...

SLA探活工具EaseProbe

工具介绍 EaseProbe可以做三种工作&#xff1a;探测、通知和报告。 项目地址&#xff1a;https://github.com/megaease/easeprobe 1、安装 [rootlocalhost ]# yum -y install unzip go [rootlocalhost ]# unzip easeprobe-main.zip [rootlocalhost ]# cd easeprobe-main [r…...

[Java] 观察者模式简述

模式定义&#xff1a;定义了对象之间的一对多依赖&#xff0c;让多个观察者对象同时监听某一个主题对象&#xff0c;当主题对象发生变化时&#xff0c;他的所有依赖者都会收到通知并且更新 依照这个图&#xff0c;简单的写一个代码 package Section1.listener;import java.ut…...

linux驱动定时器实现按键按下打印字符

#include <linux/init.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/interrupt.h>struct device_node *dev; unsigned int irqno; //中断处理函数 irqreturn_t myirq_handler(int irq,void *…...

反转链表(JS)

反转链表 题目 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例 2&#xff1a; 输入&#xff1a;head [1,2] 输出&#xff1a;[2,1]示例 3&…...

[PyTorch][chapter 45][RNN_2]

目录&#xff1a; RNN 问题 RNN 时序链问题 RNN 词组预测的例子 RNN简洁实现 一 RNN 问题 RNN 主要有两个问题&#xff0c;梯度弥散和梯度爆炸 1.1 损失函数 梯度 其中&#xff1a; 则 1.1 梯度爆炸&#xff08;Gradient Exploding&#xff09; 上面矩阵进行连乘后…...

基于canvas画布的实用类Fabric.js的使用

目录 前言 一、Fabric.js简介 二、开始 1、引入Fabric.js 2、在main.js中使用 3、初始化画布 三、方法 四、事件 1、常用事件 2、事件绑定 3、事件解绑 五、canvas常用属性 六、对象属性 1、基本属性 2、扩展属性 七、图层层级操作 八、复制和粘贴 1、复制 2…...

基于SpringBoot+Vue驾校理论课模拟考试系统源码(自动化部署)

DrivingTestSimulation Unity3D Project, subject two, simulated driving test 【更新信息】 更新时间-2021-1-17 解决了方向盘不同机型转动轴心偏离 更新时间-2021-2-18 加入了手刹系统 待更新-2021-6-19&#xff08;工作太忙少有时间更新&#xff0c;先指出问题&#xf…...

SpringBoot使用Redis对用户IP进行接口限流

使用接口限流的主要目的在于提高系统的稳定性&#xff0c;防止接口被恶意打击&#xff08;短时间内大量请求&#xff09;。 一、创建限流注解 引入redis依赖 <!--redis--><dependency><groupId>org.springframework.boot</groupId><artifactId&g…...

MeterSphere学习篇

从开发环境部署开始 metersphere-1.20.4 源码下载地址&#xff1a; https://gitee.com/fit2cloud-feizhiyun/MeterSphere/tree/v1.20/ MeterSphere GitHub 相关插件程序下载 相关准备 安装mysql 配置IDEA...

大数据技术之Clickhouse---入门篇---数据类型、表引擎

星光下的赶路人star的个人主页 今天没有开始的事&#xff0c;明天绝对不会完成 文章目录 1、数据类型1.1 整型1.2 浮点型1.3 布尔型1.4 Decimal型1.5 字符串1.6 枚举类型1.7 时间类型1.8 数组 2、表引擎2.1 表引擎的使用2.2 TinyLog2.3 Memory2.4 MergeTree2.4.1 Partition by分…...

【微服务架构设计】微服务不是魔术:处理超时

微服务很重要。它们可以为我们的架构和团队带来一些相当大的胜利&#xff0c;但微服务也有很多成本。随着微服务、无服务器和其他分布式系统架构在行业中变得更加普遍&#xff0c;我们将它们的问题和解决它们的策略内化是至关重要的。在本文中&#xff0c;我们将研究网络边界可…...

天下风云出我辈,AI准独角兽实在智能获评“十大数字经济风云企业

时值盛夏&#xff0c;各地全力拼经济的氛围同样热火朝天。在浙江省经济强区余杭区这片创业热土上&#xff0c;人工智能助力数字经济建设正焕发出蓬勃生机。 7月28日&#xff0c;经专家评审、公开投票&#xff0c;由中共杭州市余杭区委组织部&#xff08;区委两新工委&#xff…...

SpringBoot2学习笔记

信息来源&#xff1a;https://www.bilibili.com/video/BV19K4y1L7MT?p5&vd_source3969f30b089463e19db0cc5e8fe4583a 作者提供的文档&#xff1a;https://www.yuque.com/atguigu/springboot 作者提供的代码&#xff1a;https://gitee.com/leifengyang/springboot2 ----…...

安达发|APS生产派单系统对数字化工厂有哪些影响和作用

数字化工厂是当今制造业的热门话题&#xff0c;而APS软件则是这一领域的颠覆者。它以其独特的影响和作用&#xff0c;给制造业带来了巨大的改变。让我们一起来看看APS软件对数字化工厂有哪些影响和作用吧&#xff01; 提高生产效率的神器 1.APS软件作为数字化工厂的核心系统&a…...

状态机的介绍和使用 | 京东物流技术团队

1 状态机简介 1.1 定义 我们先来给出状态机的基本定义。一句话&#xff1a; 状态机是有限状态自动机的简称&#xff0c;是现实事物运行规则抽象而成的一个数学模型。 先来解释什么是“状态”&#xff08; State &#xff09;。现实事物是有不同状态的&#xff0c;例如一个自…...

tinkerCAD案例:32. 使用对齐工具构建喷泉

tinkerCAD案例&#xff1a;32. 使用对齐工具构建喷泉 In this lesson, you will practice the basics in Tinkercad, such as move, rotate, and scale. You will also learn how to use the Align Tool. 在本课中&#xff0c;您将练习 Tinkercad 中的基础知识&#xff0c;例如…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...