平板光波导中导模的(注意不是泄露模)传播常数β的matlab计算(验证了是对的)
参照的是导波光学_王建(清华大学)的公式(3-1-2、3-1-3),算的参数是这本书的图3-3的。
function []=PropagationConstantsMain()
clear;clc;close all
lambda0=1.55;%真空或空气中的入射波长,单位um
k0=2*pi/lambda0;
m=3;%导模阶数(需要人为指定)
n1=1.62;%芯区的折射率
n2=1.515;%衬底的折射率
n3=1;%包层的折射率
w=5;%芯区厚度,单位um
TEorTM='TE';%选定极化
beta0=linspace(k0*n2+1e-5,k0*n1-1e-5,500);%导模的传播常数范围(根据公式自动得出)%=================%
Fun=@(x)EigEq(x,k0,n1,n2,n3,m,w,TEorTM);
%=================%figure
y=arrayfun(Fun,beta0);
plot(beta0,y,'ro','MarkerSize',2)
hold on
plot(beta0,zeros(1,length(beta0)),'k--')
hold off
axis tight
xlabel('\beta')if strcmp(TEorTM,'TE')==1%TEtitle('TE')
elseif strcmp(TEorTM,'TM')==1%TMtitle('TM')
endop=fzero(Fun,[beta0(1),beta0(end)]);
disp([TEorTM,'极化下',num2str(m),'阶导模的传播常数为:',num2str(op),' (注意单位)'])endfunction [oup]=EigEq(beta,k0,n1,n2,n3,m,w,TEorTM)
%beta未知
%m是导模阶数
%w是膜(芯区)厚
k=((k0*n1)^2-beta^2)^(1/2);
P=(beta^2-(k0*n2)^2)^(1/2);
q=(beta^2-(k0*n3)^2)^(1/2);if strcmp(TEorTM,'TE')==1%TEoup=k*w-m*pi-atan(P/k)-atan(q/k);elseif strcmp(TEorTM,'TM')==1%TMoup=k*w-m*pi-atan(P/k*((n1/n2)^2))-atan(q/k*((n1/n3)^2));
endend
做了笔记的PDF图书:https://petmask.lanzoub.com/i9x3W13pnore


注意波导沿着光波传播方向(z向)是无限长的。
Slab waveguide的色散图的计算(未详细验证正确性)
function []=SlabWaveguideDispersionMain()
clear;clc;close all
c_const=299792458;%m/s
lambda0=linspace(0.9,2,1000);%真空或空气中的入射波长范围(人为指定),单位um
k0=2*pi./lambda0;%行数组
w0=c_const.*k0;%行数组
%m=3;%导模阶数(需要人为指定)
n1=2;%芯区的折射率
n2=1;%衬底的折射率
n3=1;%包层的折射率
w=0.75;%芯区厚度,单位um
TEorTM='TE';%选定极化%============%
figure%限定了导模的范围
plot(w0,n2.*k0,'k--')
hold on
plot(w0,n1.*k0,'k--')
hold on
%============%m0sto=zeros(length(k0),1);%列数组
m1sto=zeros(length(k0),1);%列数组
m2sto=zeros(length(k0),1);%列数组
m3sto=zeros(length(k0),1);%列数组
m4sto=zeros(length(k0),1);%列数组
k0=k0.';%列数组
parfor jj=1:length(k0)Mark=jj/length(k0)K0=k0(jj,1);beta0=linspace(K0*n2+1e-5,K0*n1-1e-5,500).';%导模的传播常数范围(根据公式自动得出)%=================%
m=0;
Fun=@(x)EigEq(x,K0,n1,n2,n3,m,w,TEorTM);
if sign(EigEq(beta0(1),K0,n1,n2,n3,m,w,TEorTM))==sign(EigEq(beta0(end),K0,n1,n2,n3,m,w,TEorTM))m0sto(jj,1)=0;elsem0sto(jj,1)=fzero(Fun,[beta0(1),beta0(end)]);
end
%=================%%=================%
m=1;
Fun=@(x)EigEq(x,K0,n1,n2,n3,m,w,TEorTM);
if sign(EigEq(beta0(1),K0,n1,n2,n3,m,w,TEorTM))==sign(EigEq(beta0(end),K0,n1,n2,n3,m,w,TEorTM))m1sto(jj,1)=0;elsem1sto(jj,1)=fzero(Fun,[beta0(1),beta0(end)]);
end
%=================%%=================%
m=2;
Fun=@(x)EigEq(x,K0,n1,n2,n3,m,w,TEorTM);
if sign(EigEq(beta0(1),K0,n1,n2,n3,m,w,TEorTM))==sign(EigEq(beta0(end),K0,n1,n2,n3,m,w,TEorTM))m2sto(jj,1)=0;elsem2sto(jj,1)=fzero(Fun,[beta0(1),beta0(end)]);
end
%=================%%=================%
m=3;
Fun=@(x)EigEq(x,K0,n1,n2,n3,m,w,TEorTM);
if sign(EigEq(beta0(1),K0,n1,n2,n3,m,w,TEorTM))==sign(EigEq(beta0(end),K0,n1,n2,n3,m,w,TEorTM))m3sto(jj,1)=0;elsem3sto(jj,1)=fzero(Fun,[beta0(1),beta0(end)]);
end
%=================%%=================%
m=4;
Fun=@(x)EigEq(x,K0,n1,n2,n3,m,w,TEorTM);
if sign(EigEq(beta0(1),K0,n1,n2,n3,m,w,TEorTM))==sign(EigEq(beta0(end),K0,n1,n2,n3,m,w,TEorTM))m4sto(jj,1)=0;elsem4sto(jj,1)=fzero(Fun,[beta0(1),beta0(end)]);
end
%=================%endM0=[w0.',m0sto];M0(M0(:,2)==0,:)=[];
M1=[w0.',m1sto];M1(M1(:,2)==0,:)=[];
M2=[w0.',m2sto];M2(M2(:,2)==0,:)=[];
M3=[w0.',m3sto];M3(M3(:,2)==0,:)=[];
M4=[w0.',m4sto];M4(M4(:,2)==0,:)=[];scatter(M0(:,1),M0(:,2),10,'ro');
hold on
scatter(M1(:,1),M1(:,2),10,'ko');
hold on
scatter(M2(:,1),M2(:,2),10,'bo');
hold on
scatter(M3(:,1),M3(:,2),10,'yo');
hold on
scatter(M4(:,1),M4(:,2),10,'kd');
hold off
legend('','','m0','m1','m2','m3','m4')if strcmp(TEorTM,'TE')==1%TEtitle('TE')
elseif strcmp(TEorTM,'TM')==1%TMtitle('TM')
end
xlabel('\omega_{0}')
ylabel('\beta')
axis tight
%disp([TEorTM,'极化下',num2str(m),'阶导模的传播常数为:',num2str(op),' (注意单位)'])%============%
figure%限定了导模的范围
plot(lambda0,n2.*k0,'k--')
hold on
plot(lambda0,n1.*k0,'k--')
hold on
%============%
M0=[lambda0.',m0sto];M0(M0(:,2)==0,:)=[];
M1=[lambda0.',m1sto];M1(M1(:,2)==0,:)=[];
M2=[lambda0.',m2sto];M2(M2(:,2)==0,:)=[];
M3=[lambda0.',m3sto];M3(M3(:,2)==0,:)=[];
M4=[lambda0.',m4sto];M4(M4(:,2)==0,:)=[];scatter(M0(:,1),M0(:,2),10,'ro');
hold on
scatter(M1(:,1),M1(:,2),10,'ko');
hold on
scatter(M2(:,1),M2(:,2),10,'bo');
hold on
scatter(M3(:,1),M3(:,2),10,'yo');
hold on
scatter(M4(:,1),M4(:,2),10,'kd');
hold off
legend('','','m0','m1','m2','m3','m4')if strcmp(TEorTM,'TE')==1%TEtitle('TE')
elseif strcmp(TEorTM,'TM')==1%TMtitle('TM')
end
xlabel('\lambda_{0}(um)')
ylabel('\beta')
axis tightendfunction [oup]=EigEq(beta,k0,n1,n2,n3,m,w,TEorTM)
%beta未知
%m是导模阶数
%w是膜(芯区)厚
k=((k0*n1)^2-beta^2)^(1/2);
P=(beta^2-(k0*n2)^2)^(1/2);
q=(beta^2-(k0*n3)^2)^(1/2);if strcmp(TEorTM,'TE')==1%TEoup=k*w-m*pi-atan(P/k)-atan(q/k);elseif strcmp(TEorTM,'TM')==1%TMoup=k*w-m*pi-atan(P/k*((n1/n2)^2))-atan(q/k*((n1/n3)^2));
endend
第一个代码加了算有效折射率的
function []=PropagationConstantsMain()
clear;clc;close all
lambda0=9.608016155617717;%真空或空气中的入射波长,单位um
k0=2*pi/lambda0;
m=0;%导模阶数(需要人为指定)
n1=3;%芯区的折射率
n2=1;%衬底的折射率
n3=1;%包层的折射率
w=0.27;%芯区厚度,单位um
TEorTM='TE';%选定极化
beta0=linspace(k0*n2+1e-5,k0*n1-1e-5,500);%导模的传播常数范围(根据公式自动得出)%=================%
Fun=@(x)EigEq(x,k0,n1,n2,n3,m,w,TEorTM);
%=================%figure
y=arrayfun(Fun,beta0);
plot(beta0,y,'ro','MarkerSize',2)
hold on
plot(beta0,zeros(1,length(beta0)),'k--')
hold off
axis tight
xlabel('\beta')if strcmp(TEorTM,'TE')==1%TEtitle('TE')
elseif strcmp(TEorTM,'TM')==1%TMtitle('TM')
endop=fzero(Fun,[beta0(1),beta0(end)]);
disp([TEorTM,'极化下',num2str(m),'阶导模的传播常数为:',num2str(op),' (注意单位)'])
disp([TEorTM,'极化下',num2str(m),'阶导模的有效折射率为:',num2str(op/k0)])endfunction [oup]=EigEq(beta,k0,n1,n2,n3,m,w,TEorTM)
%beta未知
%m是导模阶数
%w是膜(芯区)厚
k=((k0*n1)^2-beta^2)^(1/2);
P=(beta^2-(k0*n2)^2)^(1/2);
q=(beta^2-(k0*n3)^2)^(1/2);if strcmp(TEorTM,'TE')==1%TEoup=k*w-m*pi-atan(P/k)-atan(q/k);elseif strcmp(TEorTM,'TM')==1%TMoup=k*w-m*pi-atan(P/k*((n1/n2)^2))-atan(q/k*((n1/n3)^2));
endend
相关文章:
平板光波导中导模的(注意不是泄露模)传播常数β的matlab计算(验证了是对的)
参照的是导波光学_王建(清华大学)的公式(3-1-2、3-1-3),算的参数是这本书的图3-3的。 function []PropagationConstantsMain() clear;clc;close all lambda01.55;%真空或空气中的入射波长,单位um k02*pi/lambda0; m3;%导模阶数(需要人为指定) n11.62;%芯…...
JVM面试题--JVM组成
JVM是什么 Java Virtual Machine Java程序的运行环境(java二进制字节码的运行环境) 运行流程 什么是程序计数器? 程序计数器:线程私有的,内部保存的字节码的行号。用于记录正在执行的字节码指令的地址。 我们知道ja…...
【Golang 接口自动化05】使用yml管理自动化用例
目录 YAML 基本语法 对象:键值对的集合(key:value) 数组:一组按顺序排列的值 字面量:单个的、不可再分的值(数字、字符串、布尔值) yml 格式的测试用例 定义yml文件 创建结构体 读取yml文件中的用例数据 调试…...
【【STM32学习-3】】
STM32学习-3 下面是对c语言的稍微复习 这个是我们设置好的文件 以后拖出去用就可以了 这里加入关于指针的感想 关于指针数组和数组指针的想法 常规的东西是int a10; int * p&a; (p指向了a元素,意思是p等于a的地址 类型是int*)就是 整型指…...
代码随想录第四十八天|198、213、337.打家劫舍
198.打家劫舍 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个…...
js笔记总结
prototype 属性的作用 JavaScript 规定,每个函数都有一个prototype属性,指向一个对象。 function f() {} typeof f.prototype // "object" 上面代码中,函数f默认具有prototype属性,指向一个对象。 对于普通函数来…...
第四章:Spring上
第四章:Spring上 4.1:Spring简介 Spring概述 官网地址:https://spring.io/。 Spring是最受欢迎的企业级的java应用程序开发框架,数以百万的来自世界各地的开发人员使用Spring框架来创建性能好、易于测试、可重用的代码。Spring框…...
【时频分析,非线性中频】非线性STFT在瞬时频率估计中的应用(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
MTK平台关机流程和原因(二)
(1)ShutdownThread 从上一篇可以看到,最终会调用此类的shutdown以及reboot等函数,我们来看一下这些函数的实现。 (A)被调用函数 //frameworks/base/services/core/java/com/android/server/power/Shutdo…...
【Python】pyqt6入门到入土系列,非常详细...
前言 嗨喽,大家好呀~这里是爱看美女的茜茜呐 一、什么是PyQt6? 简单介绍一下PyQt6 1、基础简介 PyQt6 Digia 公司的 Qt 程序的 Python 中间件。Qt库是最强大的GUI库之一。 PyQt6的官网:www.riverbankcomputing.co.uk/news。 PyQt6是由Riverbank Co…...
TCP socket编程
一、服务端代码 #encoding utf -8 #导入socket库 from socket import * #等待客户端来连接,主机地址为0.0.0.0表示绑定本机所有网络接口ip地址 IP 0.0.0.0 #端口号 PORT 50000 #定义一次从socket缓存区最多读入512个字节数据 BUFLEN 512 #实例化一个socket编程…...
HTTP——一、了解Web及网络基础
HTTP 一、使用HTTP协议访问Web二、HTTP的诞生1、为知识共享而规划Web2、Web成长时代3、驻足不前的HTTP 三、网络基础TCP/IP1、TCP/IP协议族2、TCP/IP的分层管理3、TCP/IP 通信传输流 四、与HTTP关系密切的协议:IP、TCP和DNS1、负责传输的 IP 协议2、确保可靠性的TCP…...
[论文笔记] chatgpt系列 2.6 DeepSpeed-chat 数据集
一、FT数据集 & Reward model数据集 Deepspeed-chat 源代码的数据集: Dahoas/rm-static: 这是一个用于强化学习的静态环境数据集,包含了一个机器人在一个固定环境中的运动轨迹。该数据集旨在用于评估强化学习算法在静态环境下的表现。 Dahoas/full-hh-rlhf: 这是一个用于…...
探究SAM和眼球追踪技术在自动医学图像分割的应用(2023+GazeSAM: What You See is What You Segment)
摘要: 本研究探讨眼动追踪技术与SAM的潜力,以设计一个协同的人机交互系统,自动化医学图像分割。提出了GazeSAM系统,使放射科医生能够在图像诊断过程中通过简单地查看感兴趣的区域来收集分割掩模。该系统跟踪放射科医生的眼球运动…...
excle中的条件求和SUMIF
问题:将每一行中红色文字的前一个值累计求和到境外总数这一列 使用的公式 自制单元格的格式计算公式:ctrlf3打开格式管理,创建如下公式,其中24是表示获取文字颜色 由于sumif只能直接与第二参数条件比较,所以先使用IF(公…...
python-网络爬虫.Request
Request python中requests库使用方法详解: 一简介: Requests 是Python语言编写,基于urllib, 采用Apache2 Licensed开源协议的 HTTP 库。 与urllib相比,Requests更加方便,处理URL资源特别流畅。 可以节约我…...
时序预测 | MATLAB实现GRNN广义回归神经网络时间序列预测(多指标,多图)
时序预测 | MATLAB实现GRNN广义回归神经网络时间序列预测(多指标,多图) 目录 时序预测 | MATLAB实现GRNN广义回归神经网络时间序列预测(多指标,多图)效果一览基本介绍程序设计参考资料效果一览 基本介绍 1.MATLAB实现GRNN广义回归神经网络时间序列预测(完整源码和数据) …...
如何看待低级爬虫与高级爬虫?
爬虫之所以分为高级和低级,主要是基于其功能、复杂性和灵活性的差异。根据我总结大概有下面几点原因: 功能和复杂性:高级爬虫通常提供更多功能和扩展性,包括处理复杂页面结构、模拟用户操作、解析和清洗数据等。它们解决了开发者…...
3.分支与循环
一、分支结构 1.概念 一个 CPP 程序默认是按照代码书写顺序,从上到下依次执行下来的。但是,有时我们需要选择性的执行某些语句,来实现更加复杂的逻辑,这时候就需要分支结构语句的功能来实现。选择合适的分支语句可以显著提高程序…...
面试之多线程案例(四)
1.单例模式 单例模式是指在内存中只会创建且仅创建一次对象的设计模式。在程序中多次使用同一个对象且作用相同时,为了防止频繁地创建对象使得内存飙升,单例模式可以让程序仅在内存中创建一个对象,让所有需要调用的地方都共享这一单例对象。…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
