当前位置: 首页 > news >正文

java调用onnx模型,支持yolov5和yolov7

不点star不给解答问题

  1. 可直接运行主文件:ObjectDetection_1_25200_n.java 或者 ObjectDetection_n_7.java 都可以直接运行
  2. 两个可以运行的主文件是为了支持不用网络结构的模型,即使是onnx模型,输出的结果参数也不一样,支持以下两种结构
  3. 目前代码仅支持windows系统,linux需要替换opencvdll文件为so文件
  4. 可以封装为HTTP controller API接口
  5. 支持yolov7yolov5

代码地址

https://gitee.com/agricultureiot/yolo-onnx-java.git

相关文章:

java调用onnx模型,支持yolov5和yolov7

不点star不给解答问题 可直接运行主文件:ObjectDetection_1_25200_n.java 或者 ObjectDetection_n_7.java 都可以直接运行两个可以运行的主文件是为了支持不用网络结构的模型,即使是onnx模型,输出的结果参数也不一样,支持以下两种…...

DP-GAN损失

在前面我们看了生成器和判别器的组成。 生成器损失公式: 首先将fake image 和真实的 image输入到判别器中: 接着看第一个损失:参数分别为fake image经过判别器的输出mask,和真实的label进行损失计算。对应于: 其中l…...

自监督去噪:Noise2Void原理和调用(Tensorflow)

文章原文: https://arxiv.org/abs/1811.10980 N2V源代码: https://github.com/juglab/n2v 参考博客: https://zhuanlan.zhihu.com/p/445840211https://zhuanlan.zhihu.com/p/133961768https://zhuanlan.zhihu.com/p/563746026 文章目录 1. 方法原理1.1 Noise2Noise回…...

Mac 安装配置adb命令环境(详细步骤)

一、注意:前提要安装java环境。 因为android sdk里边开发的一些包都是依赖java语言的,所以,首先要确保已经配置了java环境。 二、在Mac下配置android adb命令环境,配置方式如下: 1、下载并安装IDE (andr…...

GDAL C++ API 学习之路 (2) GDALRasterBand篇 代码示例 翻译 自学

GDALRasterBand Class <gdal_priv.h> GDALRasterBand是GDAL中用于表示栅格数据集中一个波段的类。栅格数据集通常由多个波段组成&#xff0c;每个波段包含了特定的数据信息&#xff0c;例如高程、红、绿、蓝色等&#xff0c; 用于表示影像的不同特征。提供了许…...

springboot对静态资源的支持

1、spring boot默认静态路径支持 Spring Boot 默认将 / 所有访问映射到以下目录&#xff1a;** classpath:/static classpath:/public classpath:/resources classpath:/META-INF/resources也就是说什么也不用配置&#xff0c;通过浏览器可以直接访问这几个目录下的文件。 1…...

WPF实战学习笔记27-全局通知

新建消息事件 添加文件&#xff1a;Mytodo.Common.Events.MessageModel.cs using Prism.Events; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Diagnostics;namespace Mytod…...

openSUSE安装虚拟化 qemu kvm

1) 第一种&#xff1a;图形界面yast安装虚拟化 左下角开始菜单搜索yast 点一下就能安装&#xff0c;是不是很简单呢 2&#xff09;第二种&#xff1a; 命令行安装 网上关于openSUSE安装qemu kvm的教程比较少&#xff0c;可以搜索centos7 安装qemu kvm的教程&#xff0c;然后…...

基于linux下的高并发服务器开发(第四章)- 多进程实现并发服务器(回射服务器)

1. socket // 套接字通信分两部分&#xff1a; - 服务器端&#xff1a;被动接受连接&#xff0c;一般不会主动发起连接 - 客户端&#xff1a;主动向服务器发起连接 2.字节序转换函数 当格式化的数据在两台使用不同字节序的主机之间直接传递时&#xff0c;接收端必然错误…...

【程序分析】符号执行

符号执行入门 参考&#xff1a;https://zhuanlan.zhihu.com/p/26927127 给定一个结果&#xff0c;求解对应的程序输入。 经典符号执行与动态符号执行 参考&#xff1a;https://p1kk.github.io/2021/04/04/others/%E7%AC%A6%E5%8F%B7%E6%89%A7%E8%A1%8C&%E6%B1%A1%E7%82…...

实验笔记之——Windows下的Android环境开发搭建

好久一段时间没有进行Android开发了&#xff0c;最新在用的电脑也没有了Android studio了。为此&#xff0c;本博文记录一下最近重新搭建Android开发的过程。本博文仅为本人学习记录用&#xff08;**别看&#xff09; 之前博客也对配置Android做过记录 Android学习笔记之——A…...

#rust taur运行报错#

场景:在window11系统上运行 tauri桌面莹应用&#xff0c;提示错误。 Visual Studio 2022 生成工具 安装的sdk11 , rust运行模式是stable-x86_64-pc-window-gnu&#xff0c; 运行npm run tauir dev 一致失败&#xff0c;失败信息如下 原因&#xff1a;1&#xff1a;在window11系…...

学习购药系统源码:从前端到后端的技术探索

本文将带领读者探索购药系统源码&#xff0c;从前端到后端逐步深入&#xff0c;了解其核心功能和实现方式。我们将使用常见的Web技术&#xff0c;包括HTML、CSS、JavaScript、以及Python的Django框架&#xff0c;展示购药系统的技术奥秘。 前端技术探索 HTML结构搭建 购药系…...

第九次CCF计算机软件认证

第一题&#xff1a;中间数 在一个整数序列 a1,a2,…,an 中&#xff0c;如果存在某个数&#xff0c;大于它的整数数量等于小于它的整数数量&#xff0c;则称其为中间数。 在一个序列中&#xff0c;可能存在多个下标不相同的中间数&#xff0c;这些中间数的值是相同的。 给定一个…...

【计算机网络】传输层协议 -- TCP协议

文章目录 1. TCP协议的引入2. TCP协议的特点3. TCP协议格式3.1 序号与确认序号3.2 发送缓冲区与接收缓冲区3.3 窗口大小3.4 六个标志位 4. 确认应答机制5. 超时重传机制6. 连接管理机制6.1 三次握手6.2 四次挥手 7. 流量控制8. 滑动窗口9. 拥塞控制10. 延迟应答11. 捎带应答12.…...

Mac上命令

1. block端口&#xff1a; sudo cp /etc/pf.conf /etc/pf443.conf 编辑pf443.conf&#xff0c;vim /etc/pf443.conf&#xff0c;如 block on en0 proto udp from any to any port 9000 # block UDP port 9000 block on en0 proto tcp from any to any port 5004 # bloc…...

软件安全测试和渗透测试的区别在哪?安全测试报告有什么作用?

软件安全测试和渗透测试在软件开发过程中扮演着不同的角色&#xff0c;同时也有不同的特点和目标。了解这些区别对于软件开发和测试人员来说非常重要。本文将介绍软件安全测试和渗透测试的区别&#xff0c;以及安全测试报告在软件开发和测试过程中的作用。 一、 软件安全测试和…...

Android 从LibVLC-android到自编译ijkplayer播放H265 RTSP

概述 ijkplayer: Android/iOS video player based on FFmpeg n3.4, with MediaCodec, VideoToolbox support. 官方的描述就这么简单的一句话&#xff0c;但丝毫都不影响它的强大。 从LibVLC 到 ijkplayer 截止到2023.7.20 LibVLC-Android 最大的问题在与OOM&#xff0c;测试了…...

如何提升等保水平,减少数据泄露率

如何提升等保水平&#xff0c;减少数据泄露率&#xff1f;随着互联网的发展和数据的普及&#xff0c;数据泄露已经成为了企业面临的重要安全风险之一。为了保障企业的数据安全&#xff0c;国家制定了《网络安全法》和《信息安全等级保护管理办法》&#xff0c;要求企业提升等保…...

蓝桥云课ROS机器人旧版实验报告-07外设

项目名称 实验七 ROS[Kinetic/Melodic/Noetic]外设 成绩 内容&#xff1a;使用游戏手柄、使用RGBD传感器&#xff0c;ROS[Kinetic/Melodic/Noetic]摄像头驱动、ROS[Kinetic/Melodic/Noetic]与OpenCV库、标定摄像头、视觉里程计&#xff0c;点云库、可视化点云、滤波和缩…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...