如何快速做单元测试?
首先写unit test之前,要确认自己的测试遵循两个原则:
1、尽量不要干涉原来的代码。从阅读代码的体验来说,不要让你的测试(哪怕是一小段if..else...的代码)出现在你准备测试的代码中。
2、代码要只是测试某个class里面的一个特定的function。这个function不能太简单,太简单就没有测试的意义;也不能太复杂,不应该牵涉太多其他的class,如果太复杂就不应该写unit test,而考虑其他的测试方法。
(以上两个原则其实大家都知道,但是写的时候很多人都没有严格遵守,所以这里强调一下)
这里把单元测试分为了5个级别:
Level1:正常流程可用,即一个函数在输入正确的参数时,会有正确的输出。
Level2:异常流程可抛出逻辑异常,即输入参数有误时,不能抛出系统异常,而是用自己定义的逻辑异常通知上层调用代码其错误之处。
Level3:极端情况和边界数据可用,对输入参数的边界情况也要单独测试,确保输出是正确有效的。
Level4:所有分支、循环的逻辑走通,不能有任何流程是测试不到的。
Level5:输出数据的所有字段验证,对有复杂数据结构的输出,确保每个字段都是正确的。
在做项目中,一般只做到Level2,重要系统或者底层服务,要做到Level3或Level4。而很少做到Level5。即便如此,就已经实现了很难被黑盒测试工程师发现bug。
除了级别外,测试方法也要区分不同系统的玩法。比如基于WEB的系统,就需要确保单元测试里可以模拟发送请求,这个一般是WEB框架提供支持的。比如常用的web.py、Flask、Django都有支持。不仅仅可以模拟简单的请求,还可以模拟POST、cookie等。另外一般建议单独写个函数来模拟登录过程,这样系统登录后行为的测试就不必反复模拟登录了。
单元测试一大痛苦是构造测试数据。我的看法是测试数据应该是人造的,而不是随便从产品环境dump出来一份。只有人造的数据能确保环境可控,每次运行不会因为环境改变而频繁修改testcase。常用玩法是测试数据分为基础数据和附加数据两部分。基础数据是所有testcase共享的,比如建立几个常用角色的用户等等。附加数据是testcase内部自己建立的。这样每次testcase运行时,先清空数据库,导入基础数据,导入附加数据,然后执行测试,验证结果。
各类程序的函数可以分为纯函数和副作用函数。纯函数对应的是数学里函数的概念,输出和输入是一一对应的。对一个输入有确定的输出。比如1+1=2。而副作用函数则相反,同样的输入,在不同时间和环境里,可能有不同的输出。比如任何涉及IO、网络、数据库的。副作用函数的测试比纯函数麻烦的多,因为你必须要完整的构造其所依赖的所有环境,才能够复现一个副作用函数的行为。也正因为如此,副作用函数出bug的概率比纯函数高的多。理解这个概念以后,应该尽可能的把程序里的纯函数和副作用函数进行拆解,降低副作用函数的比例和逻辑复杂度。还有,副作用函数是会传染的,一个函数如果调用了副作用函数,那么它也会变成副作用函数。
【整整200集】超超超详细的Python接口自动化测试进阶教程,真实模拟企业项目实战!!
相关文章:
如何快速做单元测试?
首先写unit test之前,要确认自己的测试遵循两个原则: 1、尽量不要干涉原来的代码。从阅读代码的体验来说,不要让你的测试(哪怕是一小段if..else...的代码)出现在你准备测试的代码中。 2、代码要只是测试某个class里面…...
不同对象的集合转换
https://blog.csdn.net/qq_42483473/article/details/128984514 import com.alibaba.fastjson.JSON;import java.util.ArrayList; import java.util.List;/*** author */ public class ObjectConversion {/*** 从List<A> copy到List<B>* param list List<B>…...
【机器学习】Gradient Descent
Gradient Descent for Linear Regression 1、梯度下降2、梯度下降算法的实现(1) 计算梯度(2) 梯度下降(3) 梯度下降的cost与迭代次数(4) 预测 3、绘图4、学习率 首先导入所需的库: import math, copy import numpy as np import matplotlib.pyplot as plt plt.styl…...
直播读弹幕机器人:直播弹幕采集+文字转语音(附完整代码)
目录 前言代码实现请求数据解析数据文字转语音完整代码 高级点的tk界面版 前言 直播读弹幕机器人是指能够实时读取直播平台上观众发送的弹幕,并将其转化为语音进行播放的机器人。这种机器人通常会使用文字转语音技术,将接收到的弹幕文本转为语音&#x…...
K3s vs K8s:轻量级对决 - 探索替代方案
在当今云原生应用的领域中,Kubernetes(简称K8s)已经成为了无可争议的领导者。然而,随着应用规模的不断增长,一些开发者和运维人员开始感受到了K8s的重量级特性所带来的挑战。为了解决这一问题,一个名为K3s的…...
dev控件gridControl,gridview中添加合计
需求:在合并结账查询中,双击每一条结账出现这次结账对应的结算明细: 弹出的页面包括:结算日期,ID,姓名,费别,预交金收入,结算金额,收据号,合计&a…...
SpringBoot基础认识
创建SpringBoot模块 首先需要引设置maven并引用maven环境 1.打开项目结构,new module,选择Spring Initializr,URL选默认: group填写分组如com.kdy , Artifact起个模块名如springboot_quickstart,Type选择M…...
二十三种设计模式第十九篇--命令模式
命令模式是一种行为设计模式,它将请求封装成一个独立的对象,从而允许您以参数化的方式将客户端代码与具体实现解耦。在命令模式中,命令对象充当调用者和接收者之间的中介。这使您能够根据需要将请求排队、记录请求日志、撤销操作等。 命令模…...
STM32基础入门学习笔记:基础知识和理论 开发环境建立
文件目录: 一:基础知识和理论 1.ARM简介 2.STM32简介 3.STM32命名规范 4.STM32内部功能* 5.STM32接口定义 二:开发环境建立 1.开发板简介 2.ISP程序下载 3.最小系统电路 4.KEIL的安装 5.工程简介与调试流程 6.固件库的安装 7.编…...
Qt应用开发(基础篇)——数值微调输入框QAbstractSpinBox、QSpinBox、QDoubleSpinBox
目录 一、前言 二、QAbstractSpinBox类 1、accelerated 2、acceptableInput 3、alignment 4、buttonSymbols 5、correctionMode 6、frame 7、keyboardTracking 8、readOnly 9、showGroupSeparator 10、specialValueText 11、text 12、wrapping 13、信号 二、Q…...
html | 无js二级菜单
1. 效果图 2. 代码 <meta charset"utf-8"><style> .hiddentitle{display:none;}nav ul{list-style-type: none;background-color: #001f3f;overflow:hidden; /* 父标签加这个,防止有浮动子元素时,该标签失去高度*/margin: 0;padd…...
appium的基本使用
appium的基本使用 一、appium的基本使用appium环境安装1、安装Android SDK 2、安装Appium3、安装手机模拟器4、Pycharm安装 appium-python-alicent5、连接appium和模拟器6、Python代码调用appium软件,appium软件在通过adb命令调用android操作系统(模拟器…...
Dockerfile构建nginx镜像(编译安装)
Dockerfile构建nginx镜像 1、建立工作目录 [rootdocker ~]# mkdir nginx [rootdocker ~]# cd nginx/ 2、编写Dockerfile文件 [rootdocker nginx]# vim run.sh [rootdocker nginx]# vim Dockerfile #基于的基础镜像 FROM centos:7#镜像作者信息 MAINTAINER Crushlinux <…...
手机屏幕视窗机器视觉定位软硬件-康耐德
【检测目的】 手机屏幕视窗视觉定位 【效果图片】 【安装示意图】 【硬件配置】...
Databend 开源周报第 104 期
Databend 是一款现代云数仓。专为弹性和高效设计,为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务:https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展,遇到更贴近你心意的 Databend 。 从 Kafka 载入数…...
用于医学图像分类的双引导的扩散网络
文章目录 DiffMIC: Dual-Guidance Diffusion Network for Medical Image Classification摘要本文方法实验结果 DiffMIC: Dual-Guidance Diffusion Network for Medical Image Classification 摘要 近年来,扩散概率模型在生成图像建模中表现出了显著的性能…...
8.2day03 Redis入门+解决员工模块
概述 在我们日常的Java Web开发中,无不都是使用数据库来进行数据的存储,由于一般的系统任务中通常不会存在高并发的情况,所以这样看起来并没有什么问题,可是一旦涉及大数据量的需求,比如一些商品抢购的情景࿰…...
通过案例实战详解elasticsearch自定义打分function_score的使用
前言 elasticsearch给我们提供了很强大的搜索功能,但是有时候仅仅只用相关度打分是不够的,所以elasticsearch给我们提供了自定义打分函数function_score,本文结合简单案例详解function_score的使用方法,关于function-score-query…...
SpringBoot第28讲:SpringBoot集成MySQL - MyBatis-Plus方式
SpringBoot第28讲:SpringBoot集成MySQL - MyBatis-Plus方式 本文是SpringBoot第28讲,MyBatis-Plus(简称 MP)是一个 MyBatis的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生。MyB…...
AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解
本文使用工具,作者:秋葉aaaki 免责声明: 工具免费提供 无任何盈利目的 大家好,我是风雨无阻。 今天为大家带来的是 AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解。 目前,AI 绘画Stable Diffusion的…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
41道Django高频题整理(附答案背诵版)
解释一下 Django 和 Tornado 的关系? Django和Tornado都是Python的web框架,但它们的设计哲学和应用场景有所不同。 Django是一个高级的Python Web框架,鼓励快速开发和干净、实用的设计。它遵循MVC设计,并强调代码复用。Django有…...
6.计算机网络核心知识点精要手册
计算机网络核心知识点精要手册 1.协议基础篇 网络协议三要素 语法:数据与控制信息的结构或格式,如同语言中的语法规则语义:控制信息的具体含义和响应方式,规定通信双方"说什么"同步:事件执行的顺序与时序…...
OPENCV图形计算面积、弧长API讲解(1)
一.OPENCV图形面积、弧长计算的API介绍 之前我们已经把图形轮廓的检测、画框等功能讲解了一遍。那今天我们主要结合轮廓检测的API去计算图形的面积,这些面积可以是矩形、圆形等等。图形面积计算和弧长计算常用于车辆识别、桥梁识别等重要功能,常用的API…...
