当前位置: 首页 > news >正文

如何快速做单元测试?

首先写unit test之前,要确认自己的测试遵循两个原则

1、尽量不要干涉原来的代码。从阅读代码的体验来说,不要让你的测试(哪怕是一小段if..else...的代码)出现在你准备测试的代码中。

2、代码要只是测试某个class里面的一个特定的function。这个function不能太简单,太简单就没有测试的意义;也不能太复杂,不应该牵涉太多其他的class,如果太复杂就不应该写unit test,而考虑其他的测试方法。

(以上两个原则其实大家都知道,但是写的时候很多人都没有严格遵守,所以这里强调一下)

这里把单元测试分为了5个级别:

Level1:正常流程可用,即一个函数在输入正确的参数时,会有正确的输出。

Level2:异常流程可抛出逻辑异常,即输入参数有误时,不能抛出系统异常,而是用自己定义的逻辑异常通知上层调用代码其错误之处。 

Level3:极端情况和边界数据可用,对输入参数的边界情况也要单独测试,确保输出是正确有效的。

Level4:所有分支、循环的逻辑走通,不能有任何流程是测试不到的。

Level5:输出数据的所有字段验证,对有复杂数据结构的输出,确保每个字段都是正确的。

在做项目中,一般只做到Level2,重要系统或者底层服务,要做到Level3或Level4。而很少做到Level5。即便如此,就已经实现了很难被黑盒测试工程师发现bug。

除了级别外,测试方法也要区分不同系统的玩法。比如基于WEB的系统,就需要确保单元测试里可以模拟发送请求,这个一般是WEB框架提供支持的。比如常用的web.py、Flask、Django都有支持。不仅仅可以模拟简单的请求,还可以模拟POST、cookie等。另外一般建议单独写个函数来模拟登录过程,这样系统登录后行为的测试就不必反复模拟登录了。

单元测试一大痛苦是构造测试数据。我的看法是测试数据应该是人造的,而不是随便从产品环境dump出来一份。只有人造的数据能确保环境可控,每次运行不会因为环境改变而频繁修改testcase。常用玩法是测试数据分为基础数据和附加数据两部分。基础数据是所有testcase共享的,比如建立几个常用角色的用户等等。附加数据是testcase内部自己建立的。这样每次testcase运行时,先清空数据库,导入基础数据,导入附加数据,然后执行测试,验证结果。

各类程序的函数可以分为纯函数和副作用函数。纯函数对应的是数学里函数的概念,输出和输入是一一对应的。对一个输入有确定的输出。比如1+1=2。而副作用函数则相反,同样的输入,在不同时间和环境里,可能有不同的输出。比如任何涉及IO、网络、数据库的。副作用函数的测试比纯函数麻烦的多,因为你必须要完整的构造其所依赖的所有环境,才能够复现一个副作用函数的行为。也正因为如此,副作用函数出bug的概率比纯函数高的多。理解这个概念以后,应该尽可能的把程序里的纯函数和副作用函数进行拆解,降低副作用函数的比例和逻辑复杂度。还有,副作用函数是会传染的,一个函数如果调用了副作用函数,那么它也会变成副作用函数。

【整整200集】超超超详细的Python接口自动化测试进阶教程,真实模拟企业项目实战!!

相关文章:

如何快速做单元测试?

首先写unit test之前,要确认自己的测试遵循两个原则: 1、尽量不要干涉原来的代码。从阅读代码的体验来说,不要让你的测试(哪怕是一小段if..else...的代码)出现在你准备测试的代码中。 2、代码要只是测试某个class里面…...

不同对象的集合转换

https://blog.csdn.net/qq_42483473/article/details/128984514 import com.alibaba.fastjson.JSON;import java.util.ArrayList; import java.util.List;/*** author */ public class ObjectConversion {/*** 从List<A> copy到List<B>* param list List<B>…...

【机器学习】Gradient Descent

Gradient Descent for Linear Regression 1、梯度下降2、梯度下降算法的实现(1) 计算梯度(2) 梯度下降(3) 梯度下降的cost与迭代次数(4) 预测 3、绘图4、学习率 首先导入所需的库&#xff1a; import math, copy import numpy as np import matplotlib.pyplot as plt plt.styl…...

直播读弹幕机器人:直播弹幕采集+文字转语音(附完整代码)

目录 前言代码实现请求数据解析数据文字转语音完整代码 高级点的tk界面版 前言 直播读弹幕机器人是指能够实时读取直播平台上观众发送的弹幕&#xff0c;并将其转化为语音进行播放的机器人。这种机器人通常会使用文字转语音技术&#xff0c;将接收到的弹幕文本转为语音&#x…...

K3s vs K8s:轻量级对决 - 探索替代方案

在当今云原生应用的领域中&#xff0c;Kubernetes&#xff08;简称K8s&#xff09;已经成为了无可争议的领导者。然而&#xff0c;随着应用规模的不断增长&#xff0c;一些开发者和运维人员开始感受到了K8s的重量级特性所带来的挑战。为了解决这一问题&#xff0c;一个名为K3s的…...

dev控件gridControl,gridview中添加合计

需求&#xff1a;在合并结账查询中&#xff0c;双击每一条结账出现这次结账对应的结算明细&#xff1a; 弹出的页面包括&#xff1a;结算日期&#xff0c;ID&#xff0c;姓名&#xff0c;费别&#xff0c;预交金收入&#xff0c;结算金额&#xff0c;收据号&#xff0c;合计&a…...

SpringBoot基础认识

创建SpringBoot模块 首先需要引设置maven并引用maven环境 1.打开项目结构&#xff0c;new module&#xff0c;选择Spring Initializr&#xff0c;URL选默认&#xff1a; group填写分组如com.kdy &#xff0c; Artifact起个模块名如springboot_quickstart&#xff0c;Type选择M…...

二十三种设计模式第十九篇--命令模式

命令模式是一种行为设计模式&#xff0c;它将请求封装成一个独立的对象&#xff0c;从而允许您以参数化的方式将客户端代码与具体实现解耦。在命令模式中&#xff0c;命令对象充当调用者和接收者之间的中介。这使您能够根据需要将请求排队、记录请求日志、撤销操作等。 命令模…...

STM32基础入门学习笔记:基础知识和理论 开发环境建立

文件目录&#xff1a; 一&#xff1a;基础知识和理论 1.ARM简介 2.STM32简介 3.STM32命名规范 4.STM32内部功能* 5.STM32接口定义 二&#xff1a;开发环境建立 1.开发板简介 2.ISP程序下载 3.最小系统电路 4.KEIL的安装 5.工程简介与调试流程 6.固件库的安装 7.编…...

Qt应用开发(基础篇)——数值微调输入框QAbstractSpinBox、QSpinBox、QDoubleSpinBox

目录 一、前言 二、QAbstractSpinBox类 1、accelerated 2、acceptableInput 3、alignment 4、buttonSymbols 5、correctionMode 6、frame 7、keyboardTracking 8、readOnly 9、showGroupSeparator 10、specialValueText 11、text 12、wrapping 13、信号 二、Q…...

html | 无js二级菜单

1. 效果图 2. 代码 <meta charset"utf-8"><style> .hiddentitle{display:none;}nav ul{list-style-type: none;background-color: #001f3f;overflow:hidden; /* 父标签加这个&#xff0c;防止有浮动子元素时&#xff0c;该标签失去高度*/margin: 0;padd…...

appium的基本使用

appium的基本使用 一、appium的基本使用appium环境安装1、安装Android SDK 2、安装Appium3、安装手机模拟器4、Pycharm安装 appium-python-alicent5、连接appium和模拟器6、Python代码调用appium软件&#xff0c;appium软件在通过adb命令调用android操作系统&#xff08;模拟器…...

Dockerfile构建nginx镜像(编译安装)

Dockerfile构建nginx镜像 1、建立工作目录 [rootdocker ~]# mkdir nginx [rootdocker ~]# cd nginx/ 2、编写Dockerfile文件 [rootdocker nginx]# vim run.sh [rootdocker nginx]# vim Dockerfile #基于的基础镜像 FROM centos:7#镜像作者信息 MAINTAINER Crushlinux <…...

手机屏幕视窗机器视觉定位软硬件-康耐德

【检测目的】 手机屏幕视窗视觉定位 【效果图片】 【安装示意图】 【硬件配置】...

Databend 开源周报第 104 期

Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 从 Kafka 载入数…...

用于医学图像分类的双引导的扩散网络

文章目录 DiffMIC: Dual-Guidance Diffusion Network for Medical Image Classification摘要本文方法实验结果 DiffMIC: Dual-Guidance Diffusion Network for Medical Image Classification 摘要 近年来&#xff0c;扩散概率模型在生成图像建模中表现出了显著的性能&#xf…...

8.2day03 Redis入门+解决员工模块

概述 在我们日常的Java Web开发中&#xff0c;无不都是使用数据库来进行数据的存储&#xff0c;由于一般的系统任务中通常不会存在高并发的情况&#xff0c;所以这样看起来并没有什么问题&#xff0c;可是一旦涉及大数据量的需求&#xff0c;比如一些商品抢购的情景&#xff0…...

通过案例实战详解elasticsearch自定义打分function_score的使用

前言 elasticsearch给我们提供了很强大的搜索功能&#xff0c;但是有时候仅仅只用相关度打分是不够的&#xff0c;所以elasticsearch给我们提供了自定义打分函数function_score&#xff0c;本文结合简单案例详解function_score的使用方法&#xff0c;关于function-score-query…...

SpringBoot第28讲:SpringBoot集成MySQL - MyBatis-Plus方式

SpringBoot第28讲&#xff1a;SpringBoot集成MySQL - MyBatis-Plus方式 本文是SpringBoot第28讲&#xff0c;MyBatis-Plus&#xff08;简称 MP&#xff09;是一个 MyBatis的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。MyB…...

AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解

本文使用工具&#xff0c;作者:秋葉aaaki 免责声明: 工具免费提供 无任何盈利目的 大家好&#xff0c;我是风雨无阻。 今天为大家带来的是 AI 绘画Stable Diffusion 研究&#xff08;三&#xff09;sd模型种类介绍及安装使用详解。 目前&#xff0c;AI 绘画Stable Diffusion的…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

41道Django高频题整理(附答案背诵版)

解释一下 Django 和 Tornado 的关系&#xff1f; Django和Tornado都是Python的web框架&#xff0c;但它们的设计哲学和应用场景有所不同。 Django是一个高级的Python Web框架&#xff0c;鼓励快速开发和干净、实用的设计。它遵循MVC设计&#xff0c;并强调代码复用。Django有…...

6.计算机网络核心知识点精要手册

计算机网络核心知识点精要手册 1.协议基础篇 网络协议三要素 语法&#xff1a;数据与控制信息的结构或格式&#xff0c;如同语言中的语法规则语义&#xff1a;控制信息的具体含义和响应方式&#xff0c;规定通信双方"说什么"同步&#xff1a;事件执行的顺序与时序…...

OPENCV图形计算面积、弧长API讲解(1)

一.OPENCV图形面积、弧长计算的API介绍 之前我们已经把图形轮廓的检测、画框等功能讲解了一遍。那今天我们主要结合轮廓检测的API去计算图形的面积&#xff0c;这些面积可以是矩形、圆形等等。图形面积计算和弧长计算常用于车辆识别、桥梁识别等重要功能&#xff0c;常用的API…...