JUC并发编程之volatile详解
目录
1. volatile
1.1 volatile关键字的作用
1.1.1 变量可见性
1.1.2 禁止指令重排序
1.2 volatile可见性案例
1.3 volatile非原子性案例
1.4 volatile 禁止重排序
1.5 volatile 日常使用场景
送书活动
1. volatile
在并发编程中,多线程操作共享的变量时,可能会导致线程安全问题,如数据竞争、可见性问题等。为了解决这些问题,Java提供了JUC(java.util.concurrent)工具包,其中包含了很多用于处理并发编程的工具类和接口。在JUC中,volatile是一个关键字,它可以用于修饰变量,用来确保变量的可见性和禁止指令重排序,从而在一定程度上解决线程安全问题。
1.1 volatile关键字的作用
1.1.1 变量可见性
在多线程环境下,如果一个线程修改了共享变量的值,其他线程可能由于线程间的数据不一致性而看不到该变量的最新值。这种问题称为“变量不可见性”或“可见性问题”。
volatile关键字可以确保被修饰的变量对所有线程可见。当一个线程修改了volatile变量的值,其他线程立即能够看到修改后的最新值,而不会使用缓存中的旧值。
1.1.2 禁止指令重排序
在JVM(Java虚拟机)中,为了优化性能,编译器和处理器可能会对指令进行重排序。在单线程环境下,这种重排序不会影响程序的执行结果。然而,在多线程环境下,指令重排序可能会导致线程安全问题。
volatile关键字可以防止指令重排序,确保被修饰的变量按照代码中的顺序执行。
1.2 volatile可见性案例
public class VolatileExample {private static volatile boolean flag = false;public static void main(String[] args) {new Thread(() -> {while (!flag) {System.out.println("Waiting for the flag to be true...");}System.out.println("Flag is now true. Exiting the thread.");}).start();try {Thread.sleep(1000); // 确保主线程在子线程之前执行} catch (InterruptedException e) {e.printStackTrace();}System.out.println("Setting the flag to true...");flag = true;}
}
在上面的示例中,我们创建了一个VolatileExample类,并声明了一个volatile类型的flag变量。在主线程中,我们启动一个新的子线程,该子线程会不断地检查flag变量的值,直到flag变为true时,子线程退出。
在主线程中,我们将flag变量设置为true。由于flag变量被声明为volatile类型,子线程能够及时看到flag的最新值,从而退出循环,输出“Flag is now true. Exiting the thread.”。
这个示例演示了volatile关键字的作用,确保了flag变量的可见性。如果我们没有使用volatile关键字,子线程可能会一直循环下去,因为它看不到主线程对flag的修改。

1.3 volatile非原子性案例
public class Test {public static void main(String[] args) throws InterruptedException {VolatileAtomicityExample example = new VolatileAtomicityExample();for(int i=1;i<=100;i++){new Thread(()->{for(int j=1;j<=1000;j++)example.increment();},String.valueOf(i)).start();}TimeUnit.SECONDS.sleep(2);System.out.println(example.getCount());}}
class VolatileAtomicityExample {volatile int count = 0;public void increment() {count++;}public int getCount() {return count;}
}
我们创建了一个VolatileAtomicityExample类,其中的成员变量count被声明为volatile类型。然后,我们创建了100个线程,每个线程分别执行1000次increment()操作,对count进行自增。最后,我们在主线程中打印count的最终值。以上示例中的输出结果可能会因为运行时的不确定性而有所不同。每次运行时可能得到不同的结果,但通常结果都小于100000。为了解决这个问题,我们需要使用synchronized关键字或其他线程安全机制来确保increment()方法的原子性。
这是什么原因呢?

对于volatile变量具备可见性,JVM只是保证从主内存加载到线程工作内存的值是最新的,也仅是数据加载时是最新的。但是多线程环境下,"数据计算"和"数据赋值"操作可能多次出现,若数据在加载之后,若主内存volatile修饰变量发生修改之后,线程工作内存中的操作将会作废去读主内存最新值,操作出现写丢失问题。即各线程私有内存和主内存公共内存中变量不同步,进而导致数据不一致。由此可见volatile解决的是变量读时的可见性问题,但无法保证原子性,对于多线程修改主内存共享变量的场景必须使用加锁同步。
1.4 volatile 禁止重排序
内存屏障是一种硬件指令或者编译器指令,用于控制内存操作的顺序,以确保多线程环境下的内存可见性和正确的执行顺序。
内存屏障分为两种类型:
-
内存读屏障(Load Barrier):它是一个特殊的硬件或者编译器指令,用于保证在内存读取操作之前,所有的先行写操作都已经完成,并且其结果对当前线程可见。也就是说,读屏障可以防止后续读取指令重排序到读屏障之前的位置。
-
内存写屏障(Store Barrier):它是一个特殊的硬件或者编译器指令,用于保证在内存写入操作之前,所有的先行写操作和写屏障之前的写操作都已经完成,并且其结果对其他线程可见。也就是说,写屏障可以防止前面的写入指令重排序到写屏障之后的位置。
volatile关键字通过内存屏障来保证变量的读写操作不会被重排序。具体来说,对于volatile变量的写操作,在写入变量之后会插入写屏障,这样可以防止其他指令重排序到写屏障之前。类似地,对于volatile变量的读操作,在读取变量之前会插入读屏障,这样可以防止其他指令重排序到读屏障之前。
通过这种方式,volatile关键字确保了对变量的读写操作具有一定的有序性,从而保证了多线程环境下的内存可见性和正确的执行顺序。
1.5 volatile 日常使用场景
状态标志:当一个线程修改了某个状态标志,其他线程需要立即看到最新的状态。这时可以使用volatile关键字修饰状态标志,保证其在多线程之间的可见性。例如:
public class Task implements Runnable {private volatile boolean isRunning = true;@Overridepublic void run() {while (isRunning) {// 执行任务逻辑}}public void stop() {isRunning = false;}
}
双重检查锁定(Double-Checked Locking):在多线程环境下,当需要延迟初始化一个对象时,为了避免重复初始化,常常使用双重检查锁定。在这种情况下,需要使用volatile关键字来确保对象在多线程环境中的可见性。例如:
public class Singleton {private volatile static Singleton instance;private Singleton() {}public static Singleton getInstance() {if (instance == null) {synchronized (Singleton.class) {if (instance == null) {instance = new Singleton();}}}return instance;}
}
在上述代码中,我们实现了一个简单的单例模式。在getInstance()方法中,我们使用双重检查锁定来实现延迟初始化,确保只有在instance为空时才创建新的Singleton实例。
然而,在多线程环境下,由于指令重排序的存在,可能会导致以下问题:
-
对象引用不为空但尚未初始化:在线程A执行完
instance = new Singleton();这一行之前,可能发生指令重排序,导致instance的引用不为空,但是Singleton实例的初始化还未完成。这样,线程B在执行return instance;时就会得到一个尚未初始化的对象,导致错误。 -
可见性问题:指令重排序也可能导致线程B无法及时看到线程A的初始化操作。例如,线程A对
instance的赋值可能被重排到线程A的后面执行,从而线程B在读取instance时得到一个旧的引用,无法感知线程A的初始化操作。
为了解决这个问题,需要在创建Singleton实例时使用volatile关键字来保证对象的可见性和禁止指令重排序。
送书活动
《硅基物语·我是灵魂画手》
当AI遇上绘画,会打开怎样的奇妙世界?
用ChatGPT+Midjourney西出人类的灵魂与梦想
用StableDiffusion+D-ID画出青春绚丽的渴望
激活每个人隐藏的绘画天赋
人人都能成为顶尖绘画大师
ChatGPT+Midjourncy+StableDiffusion+D-ID+RunwayGen-l
爆火软件全流程协作
掌据AI绘商技巧
解锁超全绘画关键司
讲解创作底层逻辑
一本书讲透AI绘画全流程
内容简介
一本将AI绘画讲透的探秘指南,通过丰富的实践案例操作,通俗易懂地讲述AI绘画的生成步骤生动展现了AI绘画的魔法魅力。从历史到未来,跨越百年时空,从理论到实践,讲述案例操作:从技术到哲学,穿越多个维度,从语言到绘画,落地实战演练。AI绘画的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及 Prompt、风格,技术细节、多模态交互,AIGC等一系列详细讲解。让您轻松掌握生图技巧,创造出独特的艺术作品,书写属于自己的艺术时代。

当当网链接:http://product.dangdang.com/29601870.html
关注博主、点赞、收藏、
评论区评论
即可参与送书活动!
相关文章:
JUC并发编程之volatile详解
目录 1. volatile 1.1 volatile关键字的作用 1.1.1 变量可见性 1.1.2 禁止指令重排序 1.2 volatile可见性案例 1.3 volatile非原子性案例 1.4 volatile 禁止重排序 1.5 volatile 日常使用场景 送书活动 1. volatile 在并发编程中,多线程操作共享的变量时&a…...
swing布局详解
1. 布局管理器接口 (1)说明 布局管理器接口为LayoutManager和LayoutManager2,LayoutManager2是LayoutManager的子类。 (2)常用方法 方法描述LayoutManageraddLayoutComponent(String name, Component comp) removeL…...
el-table某一列嵌套使用el-popover,使用click触发,导致页面下拉框组件无法触发弹框关闭(解决办法)
在弹框触发的方法里加上document.body.click() 即可 尝试了很多其他的方法都没用,只有这个解决了 完整代码: <el-select change"sourceChange" clearable ><el-optionv-for"option in list1":key"option.code":…...
正泰电力携手图扑:VR 变电站事故追忆反演
VR(Virtual Reality,虚拟现实)技术作为近年来快速发展的一项新技术,具有广泛的应用前景,支持融合人工智能、机器学习、大数据等技术,实现更加智能化、个性化的应用。在电力能源领域,VR 技术在高性能计算机和专有设备支…...
报错 -bash: wget: command not found
1、报错 -bash: wget: command not found 可以重装 wget 工具: 卸载 wget 工具 yum remove wget下载 wget 工具 yum -y install wget最后尝试 wget “url” 又OK了,一般是原来的wget初始化有文件损坏造成的。...
HashMap扩容和Redis中Dict 扩容
扩容时机: Hash Map:要在某个临界点进行扩容处理,该临界点就是HashMap中元素的数量在数值上等于threshold(table数组长度*加载因子) Dict: 当每次新增键值对的时 , 会检测 负载因子(LoadFactor) , 判断以…...
【Redis】内存数据库Redis进阶(Redis持久化)
目录 分布式缓存 Redis 四大问题Redis 持久化RDB (Redis DataBase)RDB执行时机RDB启动方式——save指令save指令相关配置save指令工作原理save配置自动执行 RDB启动方式——bgsave指令bgsave指令相关配置bgsave指令工作原理 RDB三种启动方式对比RDB特殊启动形式RDB优点与缺点 A…...
在PHP8中检测数据类型-PHP8知识详解
在PHP 8中,可以使用多种方法来检测数据类型。以下是常用的四种方法:使用 gettype() 函数、使用 is_* 系列函数、使用 get_debug_type() 函数、使用 get_class() 函数。 一、使用 gettype() 函数 gettype() 函数返回给定变量的数据类型。例如:…...
amoeba实现MySQL读写分离
amoeba实现MySQL读写分离 准备环境:主机A和主机B作主从配置,IP地址为192.168.131.129和192.168.131.130,主机C作为中间件,也就是作为代理服务器,IP地址为192.168.131.136。三台服务器操作系统为RHEL6.4 x86_64,为…...
angr学习-入门篇
前言: 资源链接:GitHub - jakespringer/angr_ctf(题库仓库,里面有个讲解angr的PPT,里面有官方的题解很详细) GitHub - Hustcw/Angr_Tutorial_For_CTF: angr tutorial for ctf 安装: 关于angr…...
基于java SpringBoot和HTML的博客系统
随着网络技术渗透到社会生活的各个方面,传统的交流方式也面临着变化。互联网是一个非常重要的方向。基于Web技术的网络考试系统可以在全球范围内使用互联网,可以在本地或异地进行通信,大大提高了通信和交换的灵活性。在当今高速发展的互联网时…...
动态sql以及常用的标签
什么是动态sql: 指根据不同的条件生成不同的sql 搭建环境: 建表: create table blog( id varchar(50) not null comment 博客id, title varchar(100) not null comment 博客标题, author varchar(30) not null comment 博客作者, create_ti…...
DID以及社交网络中的ZKP
1. 引言 本文关键术语为: Decentralized Identity (DID,去中心化身份) or self-sovereign identity (SSI,自治身份) :是一个基于开放标准的框架,使用自主、独立的标识符和可验证证书,实现可信的数据交换。…...
基于SWAT-MODFLOW地表水与地下水耦合
耦合模型被应用到很多科学和工程领域来改善模型的性能、效率和结果,SWAT作为一个地表水模型可以较好的模拟主要的水文过程,包括地表径流、降水、蒸发、风速、温度、渗流、侧向径流等,但是对于地下水部分的模拟相对粗糙,考虑到SWAT…...
2023拒绝内卷!两年转行网络安全真实看法!
我目前转行网络安全两年,没啥天分,全靠努力,基本能够得上中级的水平了。看到大家对转行网络安全挺感兴趣,也有挺多争议,想把我的建议和经验告诉大家。 有很多人觉得网络安全已经饱和了,现在选择这个工作&a…...
【SA8295P 源码分析】57 - libDSI_MAX96789_0.so驱动库 之 QDI_Panel_Init 显示屏初始化函数 代码分析
【SA8295P 源码分析】57 - libDSI_MAX96789_0.so驱动库 之 QDI_Panel_Init 显示屏初始化函数 代码分析 一、QDI_Panel_Init() 显示屏初始化函数:Panel_DSI_MAX96789_0_Init()二、QDI_Panel_SetPower() 显示屏初始化:Panel_DSI_MAX96789_0_PowerLCD()三、QDI_Panel_GetInfo() …...
IDEA偶尔编译的时候不识别lombok
偶尔IDEA启动项目的时候会识别不到lombok,识别不到get()跟set()方法 方案 在settings添加下面代码 -Djps.track.ap.dependenciesfalse...
rust学习-构建服务器
单线程server 服务器会依次处理每一个请求,在完成第一个连接的处理之前不会处理第二个连接 // cat main.rs use std::io::prelude::*; use std::net::TcpListener; use std::net::TcpStream;fn main() {let listener TcpListener::bind("127.0.0.1:7878&quo…...
Java并发----进程、线程、并行、并发
一、进程与线程 进程 程序由指令和数据组成,但这些指令要运行,数据要读写,就必须将指令加载至 CPU,数据加载至内存。在指令运行过程中还需要用到磁盘、网络等设备。进程就是用来加载指令、管理内存、管理 IO 的 当一个程序被运行…...
【计算机网络】第 4 课 - 物理层
欢迎来到博主 Apeiron 的博客,祝您旅程愉快 ! 时止则止,时行则行。动静不失其时,其道光明。 目录 1、物理层的基本概念 2、物理层协议的主要任务 3、物理层任务 4、总结 1、物理层的基本概念 在计算机网络中,用来…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
