【深度学习Week3】ResNet+ResNeXt
ResNet+ResNeXt
- 一、ResNet
- Ⅰ.视频学习
- Ⅱ.论文阅读
- 二、ResNeXt
- Ⅰ.视频学习
- Ⅱ.论文阅读
- 三、猫狗大战
- Lenet网络
- Resnet网络
- 四、思考题
一、ResNet
Ⅰ.视频学习
ResNet在2015年由微软实验室提出,该网络的亮点:
1.超深的网络结构(突破1000层)
简单堆叠卷积层和池化层,会导致梯度消失或梯度爆炸和退化问题;
ResNet使用深度残差学习框架来解决退化问题。
2.提出residual模块

3.使用Batch Normalization加速训练(丢弃dropout)

Ⅱ.论文阅读
Deep Residual Learning for Image Recognition,CVPR2016
深度学习论文:Deep Residual Learning for Image Recognition
深度学习经典论文分析(六)
网络不是越深越好,随着网络深度的增加,精度会饱和,然后迅速退化,且这并不是由过拟合引起的。文中通过引入一个深度残差学习框架来解决退化问题。不是让网络直接拟合原先的映射,而是拟合残差映射。实际上,把残差推至0和把此映射逼近另一个非线性层相比要容易的多。
二、ResNeXt
Ⅰ.视频学习
1.更新block

2.组卷积

Ⅱ.论文阅读
Aggregated Residual Transformations for Deep Neural Networks, CVPR 2017
Aggregated Residual Transformations for Deep Neural Networks(论文翻译)
【论文阅读】Aggregated Residual Transformations for Deep Neural Networks Saining(ResNext)
现代的网络设计中通常会次堆叠类似结构,从而减少网络中超参数的数量,简化网络设计。
Inception使用了split-transform-merge策略,即先将输入分成几部分,然后分别做不同的运算,最后再合并到一起。这样可以在保持模型表达能力的情况下降低运算代价。但是Inception的结构还是过于复杂了。
本文中提出了一个简单的架构,它采用了 VGG/ResNets 的重复层策略,同时以一种简单、可扩展的方式利用了 split-transform-merge 策略。网络中的一个模块执行一组转换,每个转换都在一个低维嵌入上,其输出通过求和聚合现——要聚合的变换都是相同的拓扑结构(例如,图 1(右))。这种设计允许我们在没有专门设计的情况下扩展到任何大量的转换。这种结构可以在保持网络的计算量和参数尺寸的情况下,提高分类精度。
三、猫狗大战
猫狗大战–经典图像分类题 - AI算法竞赛-AI研习社
使用ResNet进行猫狗大战
使用Google的Colab+pytorch
Google Colab 中运行自己的py文件
Lenet网络

Resnet网络

四、思考题
1、Residual learning 的基本原理?
Residual learning的基本原理是通过引入残差连接,让神经网络可以学习残差,而不是直接学习映射函数。这样可以解决深层网络训练中的退化问题。
2、Batch Normailization 的原理,思考 BN、LN、IN 的主要区别。
Batch Normalization(批归一化)的原理是通过在网络的每个层输入前对其进行归一化,使得输入的均值接近于0,标准差接近于1。这有助于缓解梯度消失问题,加速训练过程,并且可以允许使用更高的学习率。
主要区别如下:
BN(Batch Normalization):对每个Batch的数据进行标准化,使其均值为0,方差为1。该方法在网络训练时对每个batch的数据都进行标准化,且归一化的均值和方差不固定,是最常用的一种批标准化方法。
LN(Layer Normalization):对每一层的数据进行标准化,使其均值为0,方差为1。LN不采用批次维度计算均值和方差,而是将整个层的数据作为一个标准化的对象。
IN(Instance Normalization):对每个样本的每个通道的数据进行标准化,使其均值为0,方差为1。IN是针对图像生成任务提出的一种标准化方法,将每个样本的所有像素点作为标准化的对象,对每个通道的数据进行归一化。
3、为什么分组卷积可以提升准确率?即然分组卷积可以提升准确率,同时还能降低计算量,分数数量尽量多不行吗?
分组卷积将输入分成多个组,每组内部进行卷积运算,可以减少卷积层参数数量。 此外,将卷积层的输入分成多个组,可以让不同组之间学习不同的特征表示,提取更多的信息。
过多的分组会导致每个子组的特征表达能力不足,不利于关键特征的提取,从而降低准确率。
相关文章:
【深度学习Week3】ResNet+ResNeXt
ResNetResNeXt 一、ResNetⅠ.视频学习Ⅱ.论文阅读 二、ResNeXtⅠ.视频学习Ⅱ.论文阅读 三、猫狗大战Lenet网络Resnet网络 四、思考题 一、ResNet Ⅰ.视频学习 ResNet在2015年由微软实验室提出,该网络的亮点: 1.超深的网络结构(突破1000层&…...
Visual Studio 2022的MFC框架全面理解
我是荔园微风,作为一名在IT界整整25年的老兵,今天我们来重新审视一下Visual Studio 2022开发工具下的MFC框架知识。 MFC(Microsoft Foundation Class,微软基础类库)是微软为了简化程序员的开发工作所开发的一套C类的集合…...
C# 消息队列 (MSMQ) 进程之间的通信
2个程序之间使用消息队列进行通信。 该代码只适用.NET Framework 版本,如果是.NET Core 请使用其他第三方消息队列框架,因为.NET Core 对System.Messaging 已经不支持呢。 进程1用于创建消息队列,然后发送消息。 代码如下: using System; u…...
算法练习(4):牛客在线编程05 哈希
package jz.bm;import java.lang.reflect.Array; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet;public class bm5 {/*** BM50 两数之和*/public int[] twoSum (int[] numbers, int target) {int[] res new int[…...
数字信号处理——频谱分析
数字信号处理——频谱分析 频谱分析 频谱分析是一种将复杂信号分解为较简单信号的技术。许多物理信号均可以表示为许多不同频率简单信号的和。找出一个信号在不同频率下的信息(如振幅、功率、强度或相位等)的做法即为频谱分析。 频谱 频谱是指一个时域…...
[软件工程] 架构映射战略设计方案模板
3 系统上下文 结合全局分析阶段获得的价值需求(利益相关者、系统愿景、系统范围)确定系统上下文,体现用户、目标系统与伴生系统之间的关系。 3.1 概述 绘制系统上下文图,明确解空间的系统边界。 3.2 系统协作业务流程1…n 根据全局…...
Springboot MongoDB 事务
目录 1. 事务和TransactionTemplate 2. 事务和MongoTransactionManager 3. 响应式事务 4. 事务和TransactionalOperator 5. 事务和ReactiveMongoTransactionManager 6. 事务内部的特殊行为 从版本4开始,MongoDB支持 事务。事务是建立在 会话之上的,…...
SAP自建表日志
文章目录 1.在表里加上日志记录字段1.1 加入日志结构1.2 在代码中调用记录日志通用函数1.3 在SM30里面记录日志1.4 缺点1.5 优点 2.表技术设置-日志数据更改2.1 RZ10或者RZ11修改系统参数2.2 设置表的属性2.3 查询日志2.4 缺点2.5 优点 3 SCDO文档对象3.1 勾选相应字段-数据元素…...
ansible-kubeadm在线安装单masterk8s v1.19-v1.20版本
ansible可以安装的KS8版本如下: [rootk8s-master01 ~]# yum list kubectl --showduplicates | sort -r kubectl.x86_64 1.20.0-0 kubernetes kubectl.x86_64 1.20.0-0 …...
mongodb docker 及常用命令
MongoDB属于非关系型数据库,它是由C编写的分布式文档数据库。内部使用类似于Json的bson二进制格式。 中文手册 https://www.w3cschool.cn/mongodb/ 安装 https://www.mongodb.com/try/download/community 二进制安装可见另一篇: centos7 mongodb 4.0.28…...
最新版本mac版Idea 激活Jerbel实现热部署
1.环境准备 1.安装docker desktop 客户端创建本地服务 2.创建guid 3.随便准备一个正确格式的邮箱 2.具体操作 1.通过提供的镜像直接搭建本地服务 docker pull qierkang/golang-reverseproxy docker run -d -p 8888:8888 qierkang/golang-reverseproxy2.guid 通过如下网址直…...
基于Ubuntu22.04部署bcache模式ceph
作者:吴业亮 博客:wuyeliang.blog.csdn.net 将Bcache集成到Ceph OSD后端可以带来一些优点和潜在的缺点。以下是它们的一些方面: 优点: 提高性能:BCache作为SSD缓存设备,可以提供更快的数据读取和写入速度…...
根据URL批量下载文件并压缩成zip文件
根据url批量下载图片或者视频,只需要将图片的url和名称放到数组对象即可,例如: let fileArr [{fvUrl:https://image.xuboren.com/image/2023/07/26/1410829074764cdbaa4314a084eb749e.jpg,fvName: 图片名称},{fvUrl:https://image.xuboren.…...
机器学习笔记之优化算法(六)线搜索方法(步长角度;非精确搜索;Glodstein Condition)
机器学习笔记之优化算法——线搜索方法[步长角度,非精确搜索,Glodstein Condition] 引言回顾: Armijo Condition \text{Armijo Condition} Armijo Condition关于 Armijo Condition \text{Armijo Condition} Armijo Condition的弊端 Glodstein…...
Ant Design Pro 封装网络请求
可以直接在antdPro项目的app.tsx文件中对request进行运行时配置,并且该配置会直接透传到umi-request的全局配置。后续直接从umi中引入request或者useRequest直接使用,可以说是非常方便。文档可查看:umi.js 具体配置代码: import…...
命令模式——请求发送者与接收者解耦
1、简介 1.1、概述 在软件开发中,经常需要向某些对象发送请求(调用其中的某个或某些方法),但是并不知道请求的接收者是谁,也不知道被请求的操作是哪个。此时,特别希望能够以一种松耦合的方式来设计软件&a…...
css 利用模糊属性 制作水滴
<style>.box {background-color: #111;height: 100vh;display: flex;justify-content: center;align-items: center;/* 对比度*/filter: contrast(20);}.drop {width: 150px;height: 159px;border-radius: 50%;background-color: #fff;position: absolute;/* 模糊 */filt…...
怎么才能提升自己工作能力?
表现最好的员工通常是获得加薪和工作晋升的人。您可以采取某些措施来提高您的工作绩效,并帮助您的主管将您视为他们最好的员工之一。在本文中,我们列出了 12 个技巧,可以立即提高您的工作绩效。 什么是工作绩效? 工作绩效是指您…...
Android Framework 之 Zygote
Android Zygote Android Zygote 是 Android 操作系统中一个关键的系统服务,它在系统启动时加载,为应用程序的运行提供了一种快速且资源高效的方式。 Zygote 的主要作用如下: 预加载共享库和类:Zygote 启动时,会预先加…...
二叉树的中序遍历 LeetCode热题100
题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 思路 递归,按左中右的顺序添加节点。 利用栈先进后出的特性模拟递归。 代码 /**递归写法* Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
【iOS】 Block再学习
iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...
Linux-进程间的通信
1、IPC: Inter Process Communication(进程间通信): 由于每个进程在操作系统中有独立的地址空间,它们不能像线程那样直接访问彼此的内存,所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...
