【深度学习Week3】ResNet+ResNeXt
ResNet+ResNeXt
- 一、ResNet
- Ⅰ.视频学习
- Ⅱ.论文阅读
- 二、ResNeXt
- Ⅰ.视频学习
- Ⅱ.论文阅读
- 三、猫狗大战
- Lenet网络
- Resnet网络
- 四、思考题
一、ResNet
Ⅰ.视频学习
ResNet在2015年由微软实验室提出,该网络的亮点:
1.超深的网络结构(突破1000层)
简单堆叠卷积层和池化层,会导致梯度消失或梯度爆炸和退化问题;
ResNet使用深度残差学习框架来解决退化问题。
2.提出residual模块
3.使用Batch Normalization加速训练(丢弃dropout)
Ⅱ.论文阅读
Deep Residual Learning for Image Recognition,CVPR2016
深度学习论文:Deep Residual Learning for Image Recognition
深度学习经典论文分析(六)
网络不是越深越好,随着网络深度的增加,精度会饱和,然后迅速退化,且这并不是由过拟合引起的。文中通过引入一个深度残差学习框架来解决退化问题。不是让网络直接拟合原先的映射,而是拟合残差映射。实际上,把残差推至0和把此映射逼近另一个非线性层相比要容易的多。
二、ResNeXt
Ⅰ.视频学习
1.更新block
2.组卷积
Ⅱ.论文阅读
Aggregated Residual Transformations for Deep Neural Networks, CVPR 2017
Aggregated Residual Transformations for Deep Neural Networks(论文翻译)
【论文阅读】Aggregated Residual Transformations for Deep Neural Networks Saining(ResNext)
现代的网络设计中通常会次堆叠类似结构,从而减少网络中超参数的数量,简化网络设计。
Inception使用了split-transform-merge策略,即先将输入分成几部分,然后分别做不同的运算,最后再合并到一起。这样可以在保持模型表达能力的情况下降低运算代价。但是Inception的结构还是过于复杂了。
本文中提出了一个简单的架构,它采用了 VGG/ResNets 的重复层策略,同时以一种简单、可扩展的方式利用了 split-transform-merge 策略。网络中的一个模块执行一组转换,每个转换都在一个低维嵌入上,其输出通过求和聚合现——要聚合的变换都是相同的拓扑结构(例如,图 1(右))。这种设计允许我们在没有专门设计的情况下扩展到任何大量的转换。这种结构可以在保持网络的计算量和参数尺寸的情况下,提高分类精度。
三、猫狗大战
猫狗大战–经典图像分类题 - AI算法竞赛-AI研习社
使用ResNet进行猫狗大战
使用Google的Colab+pytorch
Google Colab 中运行自己的py文件
Lenet网络
Resnet网络
四、思考题
1、Residual learning 的基本原理?
Residual learning的基本原理是通过引入残差连接,让神经网络可以学习残差,而不是直接学习映射函数。这样可以解决深层网络训练中的退化问题。
2、Batch Normailization 的原理,思考 BN、LN、IN 的主要区别。
Batch Normalization(批归一化)的原理是通过在网络的每个层输入前对其进行归一化,使得输入的均值接近于0,标准差接近于1。这有助于缓解梯度消失问题,加速训练过程,并且可以允许使用更高的学习率。
主要区别如下:
BN(Batch Normalization):对每个Batch的数据进行标准化,使其均值为0,方差为1。该方法在网络训练时对每个batch的数据都进行标准化,且归一化的均值和方差不固定,是最常用的一种批标准化方法。
LN(Layer Normalization):对每一层的数据进行标准化,使其均值为0,方差为1。LN不采用批次维度计算均值和方差,而是将整个层的数据作为一个标准化的对象。
IN(Instance Normalization):对每个样本的每个通道的数据进行标准化,使其均值为0,方差为1。IN是针对图像生成任务提出的一种标准化方法,将每个样本的所有像素点作为标准化的对象,对每个通道的数据进行归一化。
3、为什么分组卷积可以提升准确率?即然分组卷积可以提升准确率,同时还能降低计算量,分数数量尽量多不行吗?
分组卷积将输入分成多个组,每组内部进行卷积运算,可以减少卷积层参数数量。 此外,将卷积层的输入分成多个组,可以让不同组之间学习不同的特征表示,提取更多的信息。
过多的分组会导致每个子组的特征表达能力不足,不利于关键特征的提取,从而降低准确率。
相关文章:

【深度学习Week3】ResNet+ResNeXt
ResNetResNeXt 一、ResNetⅠ.视频学习Ⅱ.论文阅读 二、ResNeXtⅠ.视频学习Ⅱ.论文阅读 三、猫狗大战Lenet网络Resnet网络 四、思考题 一、ResNet Ⅰ.视频学习 ResNet在2015年由微软实验室提出,该网络的亮点: 1.超深的网络结构(突破1000层&…...

Visual Studio 2022的MFC框架全面理解
我是荔园微风,作为一名在IT界整整25年的老兵,今天我们来重新审视一下Visual Studio 2022开发工具下的MFC框架知识。 MFC(Microsoft Foundation Class,微软基础类库)是微软为了简化程序员的开发工作所开发的一套C类的集合…...
C# 消息队列 (MSMQ) 进程之间的通信
2个程序之间使用消息队列进行通信。 该代码只适用.NET Framework 版本,如果是.NET Core 请使用其他第三方消息队列框架,因为.NET Core 对System.Messaging 已经不支持呢。 进程1用于创建消息队列,然后发送消息。 代码如下: using System; u…...
算法练习(4):牛客在线编程05 哈希
package jz.bm;import java.lang.reflect.Array; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet;public class bm5 {/*** BM50 两数之和*/public int[] twoSum (int[] numbers, int target) {int[] res new int[…...

数字信号处理——频谱分析
数字信号处理——频谱分析 频谱分析 频谱分析是一种将复杂信号分解为较简单信号的技术。许多物理信号均可以表示为许多不同频率简单信号的和。找出一个信号在不同频率下的信息(如振幅、功率、强度或相位等)的做法即为频谱分析。 频谱 频谱是指一个时域…...
[软件工程] 架构映射战略设计方案模板
3 系统上下文 结合全局分析阶段获得的价值需求(利益相关者、系统愿景、系统范围)确定系统上下文,体现用户、目标系统与伴生系统之间的关系。 3.1 概述 绘制系统上下文图,明确解空间的系统边界。 3.2 系统协作业务流程1…n 根据全局…...
Springboot MongoDB 事务
目录 1. 事务和TransactionTemplate 2. 事务和MongoTransactionManager 3. 响应式事务 4. 事务和TransactionalOperator 5. 事务和ReactiveMongoTransactionManager 6. 事务内部的特殊行为 从版本4开始,MongoDB支持 事务。事务是建立在 会话之上的,…...

SAP自建表日志
文章目录 1.在表里加上日志记录字段1.1 加入日志结构1.2 在代码中调用记录日志通用函数1.3 在SM30里面记录日志1.4 缺点1.5 优点 2.表技术设置-日志数据更改2.1 RZ10或者RZ11修改系统参数2.2 设置表的属性2.3 查询日志2.4 缺点2.5 优点 3 SCDO文档对象3.1 勾选相应字段-数据元素…...
ansible-kubeadm在线安装单masterk8s v1.19-v1.20版本
ansible可以安装的KS8版本如下: [rootk8s-master01 ~]# yum list kubectl --showduplicates | sort -r kubectl.x86_64 1.20.0-0 kubernetes kubectl.x86_64 1.20.0-0 …...

mongodb docker 及常用命令
MongoDB属于非关系型数据库,它是由C编写的分布式文档数据库。内部使用类似于Json的bson二进制格式。 中文手册 https://www.w3cschool.cn/mongodb/ 安装 https://www.mongodb.com/try/download/community 二进制安装可见另一篇: centos7 mongodb 4.0.28…...

最新版本mac版Idea 激活Jerbel实现热部署
1.环境准备 1.安装docker desktop 客户端创建本地服务 2.创建guid 3.随便准备一个正确格式的邮箱 2.具体操作 1.通过提供的镜像直接搭建本地服务 docker pull qierkang/golang-reverseproxy docker run -d -p 8888:8888 qierkang/golang-reverseproxy2.guid 通过如下网址直…...
基于Ubuntu22.04部署bcache模式ceph
作者:吴业亮 博客:wuyeliang.blog.csdn.net 将Bcache集成到Ceph OSD后端可以带来一些优点和潜在的缺点。以下是它们的一些方面: 优点: 提高性能:BCache作为SSD缓存设备,可以提供更快的数据读取和写入速度…...

根据URL批量下载文件并压缩成zip文件
根据url批量下载图片或者视频,只需要将图片的url和名称放到数组对象即可,例如: let fileArr [{fvUrl:https://image.xuboren.com/image/2023/07/26/1410829074764cdbaa4314a084eb749e.jpg,fvName: 图片名称},{fvUrl:https://image.xuboren.…...

机器学习笔记之优化算法(六)线搜索方法(步长角度;非精确搜索;Glodstein Condition)
机器学习笔记之优化算法——线搜索方法[步长角度,非精确搜索,Glodstein Condition] 引言回顾: Armijo Condition \text{Armijo Condition} Armijo Condition关于 Armijo Condition \text{Armijo Condition} Armijo Condition的弊端 Glodstein…...
Ant Design Pro 封装网络请求
可以直接在antdPro项目的app.tsx文件中对request进行运行时配置,并且该配置会直接透传到umi-request的全局配置。后续直接从umi中引入request或者useRequest直接使用,可以说是非常方便。文档可查看:umi.js 具体配置代码: import…...

命令模式——请求发送者与接收者解耦
1、简介 1.1、概述 在软件开发中,经常需要向某些对象发送请求(调用其中的某个或某些方法),但是并不知道请求的接收者是谁,也不知道被请求的操作是哪个。此时,特别希望能够以一种松耦合的方式来设计软件&a…...

css 利用模糊属性 制作水滴
<style>.box {background-color: #111;height: 100vh;display: flex;justify-content: center;align-items: center;/* 对比度*/filter: contrast(20);}.drop {width: 150px;height: 159px;border-radius: 50%;background-color: #fff;position: absolute;/* 模糊 */filt…...
怎么才能提升自己工作能力?
表现最好的员工通常是获得加薪和工作晋升的人。您可以采取某些措施来提高您的工作绩效,并帮助您的主管将您视为他们最好的员工之一。在本文中,我们列出了 12 个技巧,可以立即提高您的工作绩效。 什么是工作绩效? 工作绩效是指您…...
Android Framework 之 Zygote
Android Zygote Android Zygote 是 Android 操作系统中一个关键的系统服务,它在系统启动时加载,为应用程序的运行提供了一种快速且资源高效的方式。 Zygote 的主要作用如下: 预加载共享库和类:Zygote 启动时,会预先加…...
二叉树的中序遍历 LeetCode热题100
题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 思路 递归,按左中右的顺序添加节点。 利用栈先进后出的特性模拟递归。 代码 /**递归写法* Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...