【深度学习Week3】ResNet+ResNeXt
ResNet+ResNeXt
- 一、ResNet
- Ⅰ.视频学习
- Ⅱ.论文阅读
- 二、ResNeXt
- Ⅰ.视频学习
- Ⅱ.论文阅读
- 三、猫狗大战
- Lenet网络
- Resnet网络
- 四、思考题
一、ResNet
Ⅰ.视频学习
ResNet在2015年由微软实验室提出,该网络的亮点:
1.超深的网络结构(突破1000层)
简单堆叠卷积层和池化层,会导致梯度消失或梯度爆炸和退化问题;
ResNet使用深度残差学习框架来解决退化问题。
2.提出residual模块
3.使用Batch Normalization加速训练(丢弃dropout)
Ⅱ.论文阅读
Deep Residual Learning for Image Recognition,CVPR2016
深度学习论文:Deep Residual Learning for Image Recognition
深度学习经典论文分析(六)
网络不是越深越好,随着网络深度的增加,精度会饱和,然后迅速退化,且这并不是由过拟合引起的。文中通过引入一个深度残差学习框架来解决退化问题。不是让网络直接拟合原先的映射,而是拟合残差映射。实际上,把残差推至0和把此映射逼近另一个非线性层相比要容易的多。
二、ResNeXt
Ⅰ.视频学习
1.更新block
2.组卷积
Ⅱ.论文阅读
Aggregated Residual Transformations for Deep Neural Networks, CVPR 2017
Aggregated Residual Transformations for Deep Neural Networks(论文翻译)
【论文阅读】Aggregated Residual Transformations for Deep Neural Networks Saining(ResNext)
现代的网络设计中通常会次堆叠类似结构,从而减少网络中超参数的数量,简化网络设计。
Inception使用了split-transform-merge策略,即先将输入分成几部分,然后分别做不同的运算,最后再合并到一起。这样可以在保持模型表达能力的情况下降低运算代价。但是Inception的结构还是过于复杂了。
本文中提出了一个简单的架构,它采用了 VGG/ResNets 的重复层策略,同时以一种简单、可扩展的方式利用了 split-transform-merge 策略。网络中的一个模块执行一组转换,每个转换都在一个低维嵌入上,其输出通过求和聚合现——要聚合的变换都是相同的拓扑结构(例如,图 1(右))。这种设计允许我们在没有专门设计的情况下扩展到任何大量的转换。这种结构可以在保持网络的计算量和参数尺寸的情况下,提高分类精度。
三、猫狗大战
猫狗大战–经典图像分类题 - AI算法竞赛-AI研习社
使用ResNet进行猫狗大战
使用Google的Colab+pytorch
Google Colab 中运行自己的py文件
Lenet网络
Resnet网络
四、思考题
1、Residual learning 的基本原理?
Residual learning的基本原理是通过引入残差连接,让神经网络可以学习残差,而不是直接学习映射函数。这样可以解决深层网络训练中的退化问题。
2、Batch Normailization 的原理,思考 BN、LN、IN 的主要区别。
Batch Normalization(批归一化)的原理是通过在网络的每个层输入前对其进行归一化,使得输入的均值接近于0,标准差接近于1。这有助于缓解梯度消失问题,加速训练过程,并且可以允许使用更高的学习率。
主要区别如下:
BN(Batch Normalization):对每个Batch的数据进行标准化,使其均值为0,方差为1。该方法在网络训练时对每个batch的数据都进行标准化,且归一化的均值和方差不固定,是最常用的一种批标准化方法。
LN(Layer Normalization):对每一层的数据进行标准化,使其均值为0,方差为1。LN不采用批次维度计算均值和方差,而是将整个层的数据作为一个标准化的对象。
IN(Instance Normalization):对每个样本的每个通道的数据进行标准化,使其均值为0,方差为1。IN是针对图像生成任务提出的一种标准化方法,将每个样本的所有像素点作为标准化的对象,对每个通道的数据进行归一化。
3、为什么分组卷积可以提升准确率?即然分组卷积可以提升准确率,同时还能降低计算量,分数数量尽量多不行吗?
分组卷积将输入分成多个组,每组内部进行卷积运算,可以减少卷积层参数数量。 此外,将卷积层的输入分成多个组,可以让不同组之间学习不同的特征表示,提取更多的信息。
过多的分组会导致每个子组的特征表达能力不足,不利于关键特征的提取,从而降低准确率。
相关文章:

【深度学习Week3】ResNet+ResNeXt
ResNetResNeXt 一、ResNetⅠ.视频学习Ⅱ.论文阅读 二、ResNeXtⅠ.视频学习Ⅱ.论文阅读 三、猫狗大战Lenet网络Resnet网络 四、思考题 一、ResNet Ⅰ.视频学习 ResNet在2015年由微软实验室提出,该网络的亮点: 1.超深的网络结构(突破1000层&…...

Visual Studio 2022的MFC框架全面理解
我是荔园微风,作为一名在IT界整整25年的老兵,今天我们来重新审视一下Visual Studio 2022开发工具下的MFC框架知识。 MFC(Microsoft Foundation Class,微软基础类库)是微软为了简化程序员的开发工作所开发的一套C类的集合…...
C# 消息队列 (MSMQ) 进程之间的通信
2个程序之间使用消息队列进行通信。 该代码只适用.NET Framework 版本,如果是.NET Core 请使用其他第三方消息队列框架,因为.NET Core 对System.Messaging 已经不支持呢。 进程1用于创建消息队列,然后发送消息。 代码如下: using System; u…...
算法练习(4):牛客在线编程05 哈希
package jz.bm;import java.lang.reflect.Array; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet;public class bm5 {/*** BM50 两数之和*/public int[] twoSum (int[] numbers, int target) {int[] res new int[…...

数字信号处理——频谱分析
数字信号处理——频谱分析 频谱分析 频谱分析是一种将复杂信号分解为较简单信号的技术。许多物理信号均可以表示为许多不同频率简单信号的和。找出一个信号在不同频率下的信息(如振幅、功率、强度或相位等)的做法即为频谱分析。 频谱 频谱是指一个时域…...
[软件工程] 架构映射战略设计方案模板
3 系统上下文 结合全局分析阶段获得的价值需求(利益相关者、系统愿景、系统范围)确定系统上下文,体现用户、目标系统与伴生系统之间的关系。 3.1 概述 绘制系统上下文图,明确解空间的系统边界。 3.2 系统协作业务流程1…n 根据全局…...
Springboot MongoDB 事务
目录 1. 事务和TransactionTemplate 2. 事务和MongoTransactionManager 3. 响应式事务 4. 事务和TransactionalOperator 5. 事务和ReactiveMongoTransactionManager 6. 事务内部的特殊行为 从版本4开始,MongoDB支持 事务。事务是建立在 会话之上的,…...

SAP自建表日志
文章目录 1.在表里加上日志记录字段1.1 加入日志结构1.2 在代码中调用记录日志通用函数1.3 在SM30里面记录日志1.4 缺点1.5 优点 2.表技术设置-日志数据更改2.1 RZ10或者RZ11修改系统参数2.2 设置表的属性2.3 查询日志2.4 缺点2.5 优点 3 SCDO文档对象3.1 勾选相应字段-数据元素…...
ansible-kubeadm在线安装单masterk8s v1.19-v1.20版本
ansible可以安装的KS8版本如下: [rootk8s-master01 ~]# yum list kubectl --showduplicates | sort -r kubectl.x86_64 1.20.0-0 kubernetes kubectl.x86_64 1.20.0-0 …...

mongodb docker 及常用命令
MongoDB属于非关系型数据库,它是由C编写的分布式文档数据库。内部使用类似于Json的bson二进制格式。 中文手册 https://www.w3cschool.cn/mongodb/ 安装 https://www.mongodb.com/try/download/community 二进制安装可见另一篇: centos7 mongodb 4.0.28…...

最新版本mac版Idea 激活Jerbel实现热部署
1.环境准备 1.安装docker desktop 客户端创建本地服务 2.创建guid 3.随便准备一个正确格式的邮箱 2.具体操作 1.通过提供的镜像直接搭建本地服务 docker pull qierkang/golang-reverseproxy docker run -d -p 8888:8888 qierkang/golang-reverseproxy2.guid 通过如下网址直…...
基于Ubuntu22.04部署bcache模式ceph
作者:吴业亮 博客:wuyeliang.blog.csdn.net 将Bcache集成到Ceph OSD后端可以带来一些优点和潜在的缺点。以下是它们的一些方面: 优点: 提高性能:BCache作为SSD缓存设备,可以提供更快的数据读取和写入速度…...

根据URL批量下载文件并压缩成zip文件
根据url批量下载图片或者视频,只需要将图片的url和名称放到数组对象即可,例如: let fileArr [{fvUrl:https://image.xuboren.com/image/2023/07/26/1410829074764cdbaa4314a084eb749e.jpg,fvName: 图片名称},{fvUrl:https://image.xuboren.…...

机器学习笔记之优化算法(六)线搜索方法(步长角度;非精确搜索;Glodstein Condition)
机器学习笔记之优化算法——线搜索方法[步长角度,非精确搜索,Glodstein Condition] 引言回顾: Armijo Condition \text{Armijo Condition} Armijo Condition关于 Armijo Condition \text{Armijo Condition} Armijo Condition的弊端 Glodstein…...
Ant Design Pro 封装网络请求
可以直接在antdPro项目的app.tsx文件中对request进行运行时配置,并且该配置会直接透传到umi-request的全局配置。后续直接从umi中引入request或者useRequest直接使用,可以说是非常方便。文档可查看:umi.js 具体配置代码: import…...

命令模式——请求发送者与接收者解耦
1、简介 1.1、概述 在软件开发中,经常需要向某些对象发送请求(调用其中的某个或某些方法),但是并不知道请求的接收者是谁,也不知道被请求的操作是哪个。此时,特别希望能够以一种松耦合的方式来设计软件&a…...

css 利用模糊属性 制作水滴
<style>.box {background-color: #111;height: 100vh;display: flex;justify-content: center;align-items: center;/* 对比度*/filter: contrast(20);}.drop {width: 150px;height: 159px;border-radius: 50%;background-color: #fff;position: absolute;/* 模糊 */filt…...
怎么才能提升自己工作能力?
表现最好的员工通常是获得加薪和工作晋升的人。您可以采取某些措施来提高您的工作绩效,并帮助您的主管将您视为他们最好的员工之一。在本文中,我们列出了 12 个技巧,可以立即提高您的工作绩效。 什么是工作绩效? 工作绩效是指您…...
Android Framework 之 Zygote
Android Zygote Android Zygote 是 Android 操作系统中一个关键的系统服务,它在系统启动时加载,为应用程序的运行提供了一种快速且资源高效的方式。 Zygote 的主要作用如下: 预加载共享库和类:Zygote 启动时,会预先加…...
二叉树的中序遍历 LeetCode热题100
题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 思路 递归,按左中右的顺序添加节点。 利用栈先进后出的特性模拟递归。 代码 /**递归写法* Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...

【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...

AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)
Name:3ddown Serial:FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名:Axure 序列号:8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...
React核心概念:State是什么?如何用useState管理组件自己的数据?
系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...

Redis上篇--知识点总结
Redis上篇–解析 本文大部分知识整理自网上,在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库,Redis 的键值对中的 key 就是字符串对象,而 val…...

开疆智能Ethernet/IP转Modbus网关连接鸣志步进电机驱动器配置案例
在工业自动化控制系统中,常常会遇到不同品牌和通信协议的设备需要协同工作的情况。本案例中,客户现场采用了 罗克韦尔PLC,但需要控制的变频器仅支持 ModbusRTU 协议。为了实现PLC 对变频器的有效控制与监控,引入了开疆智能Etherne…...

解密鸿蒙系统的隐私护城河:从权限动态管控到生物数据加密的全链路防护
摘要 本文以健康管理应用为例,展示鸿蒙系统如何通过细粒度权限控制、动态权限授予、数据隔离和加密存储四大核心机制,实现复杂场景下的用户隐私保护。我们将通过完整的权限请求流程和敏感数据处理代码,演示鸿蒙系统如何平衡功能需求与隐私安…...