当前位置: 首页 > news >正文

如何停止/重启/启动Redis服务

一、命令行直接启动/停止/重启redis
可以直接通过下面的命令启动/停止/重启redis

/etc/init.d/redis-server start           启动redis服务
/etc/init.d/redis-server stop            停止redis服务
/etc/init.d/redis-server restart         重启redis服务

1、启动redis服务及验证
示例如图:
在这里插入图片描述

2、停止redis服务及验证
示例如图:
在这里插入图片描述

3、重启redis服务及验证
示例如图:

在这里插入图片描述

二、通过redis的相关配置信息关闭/启动redis
还可以通过redis的客户端程序redis-cli的shutdown命令来重启redis

在这里插入图片描述
2.启动redis服务及验证
redis-server 默认配置文件启动
redis-server 配置文件路径 指定配置文件启动
例如:
redis-server /etc/redis/redis.conf
在这里插入图片描述

相关文章:

如何停止/重启/启动Redis服务

一、命令行直接启动/停止/重启redis 可以直接通过下面的命令启动/停止/重启redis /etc/init.d/redis-server start 启动redis服务 /etc/init.d/redis-server stop 停止redis服务 /etc/init.d/redis-server restart 重启redis服务1、启动redis服务…...

python 的selenium自动操控浏览器教程(2)

人生苦短,我用py 文章目录人生苦短,我用py关于部分网页无法找到元素的问题1方案1方案2关于部分网页无法找到元素的问题2解决方案被网站检查出来我们使用了selenium了怎么办?如何实现前进后退当使用py删除文件时报禁止访问怎么办怎么使用py实现…...

【Deformable Convolution】可变形卷积记录

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 可变形卷积记录 1. 正文 预印版: Deformable Convolutional Networks v1 Deformable ConvNets v2: More Deformable, Better Results 发表版…...

Oracle-Mysql 函数转换

Oracle-Mysql 函数转换limit <> ROWNUMcast <> TO_NUMBERcast as signedcast as unsignedregexp a_\\d <> REGEXP_LIKEschema() <> SELECT USER FROM DUALinformation_schema.COLUMNS表 <> ALL_TAB_COLUMNS表unix_timestampfrom_unixtime <&g…...

【Kafka】一.认识Kafka

kafka是一个分布式消息队列。由 Scala 开发的高性能跨语言分布式消息队列&#xff0c;单机吞吐量可以到达 10w 级&#xff0c;消息延迟在 ms 级。具有高性能、持久化、多副本备份、横向扩展能力。 生产者往队列里写消息&#xff0c;消费者从队列里取消息进行业务逻辑。 一般在…...

Linux软件管理YUM

目录 yum配置文件 创建仓库 yum查询功能 yum安装与升级功能 yum删除功能 yum仓库产生的问题和解决之道 yum与dnf 网络源 YUM就是通过分析RPM的标头数据后&#xff0c;根据各软件的相关性制作出属性依赖时的解决方案&#xff0c;然后可以自动处理软件的依赖属性问题&…...

【自学MYSQL】MySQL Windows安装

MySQL Windows安装 MySQL Windows下载 首先&#xff0c;我们打开 MySQL 的官网&#xff0c;网址如下&#xff1a; https://dev.mysql.com/downloads/mysql/在官网的主页&#xff0c;我们首先根据我们的操作系统&#xff0c;选择对应的系统&#xff0c;这里我们选择 Windows&…...

Linux c编程之常用技巧

一、说明 在Linux C的实际编程应用中,有很多有用的实践技巧,编程中掌握这些知识,会对编程有事半功倍的效果。 二、常用技巧 2.1 if 变量条件的写法 main.c: #include <stdio.h>int main(int argc, char *argv[]) {int a =...

21- 朴素贝叶斯 (NLP自然语言算法) (算法)

朴素贝叶斯要点 概率图模型算法往往应用于NLP自然语言处理领域。根据文本内容判定 分类 。 概率密度公式&#xff1a; 高斯朴素贝叶斯算法: from sklearn.naive_bayes import GaussianNB model GaussianNB() model.fit(X_train,y_train) 伯努利分布朴素贝叶斯算法 fro…...

设计模式第七讲-外观模式、适配器模式、模板方法模式详解

一. 外观模式 1. 背景 在现实生活中&#xff0c;常常存在办事较复杂的例子&#xff0c;如办房产证或注册一家公司&#xff0c;有时要同多个部门联系&#xff0c;这时要是有一个综合部门能解决一切手续问题就好了。 软件设计也是这样&#xff0c;当一个系统的功能越来越强&…...

flutter-第1章-配置环境

flutter-第1章-配置环境 本文针对Windows系统。 一、安装Android Studio 从Android Studio官网下载最新版本&#xff0c;一直默认安装就行。 安装完成要下载SDK&#xff0c;可能会需要科学上网。 打开AS&#xff0c;随便创建一个新项目。 点击右上角的SDK Manager 找到SDK…...

“消息驱动、事件驱动、流 ”的消息模型

文章目录背景消息驱动 Message-Driven事件驱动 Event-Driven流 Streaming事件规范标准简介&#xff1a; 本文旨在帮助大家对近期消息领域的高频词“消息驱动&#xff08;Message-Driven&#xff09;&#xff0c;事件驱动&#xff08;Event-Driven&#xff09;和流&#xff08;S…...

量化股票配对交易可以用Python语言实现吗?

量化股票配对交易可以用Python语言实现吗&#xff1f;Python 是一种流行的编程语言&#xff0c;可用于所有类型的领域&#xff0c;包括数据科学。有大量软件包可以帮助您实现目标&#xff0c;许多公司使用 Python 来开发与金融界相关的以数据为中心的应用程序和科学计算。 最重…...

机器学习洞察 | 一文带你“讲透” JAX

在上篇文章中&#xff0c;我们详细分享了 JAX 这一新兴的机器学习模型的发展和优势&#xff0c;本文我们将通过 Amazon SageMaker 示例展示如何部署并使用 JAX。JAX 的工作机制JAX 的完整工作机制可以用下面这幅图详细解释:图片来源&#xff1a;“Intro to JAX” video on YouT…...

OpenFaaS介绍

FaaS 云计算时代出现了大量XaaS形式的概念&#xff0c;从IaaS(Infrastructure as a Service)、PaaS(Platform as a Service)、SaaS(Software as a Service)到容器云引领的CaaS(Containers as a Service)&#xff0c;再到火热的微服务架构&#xff0c;它们都在试着将各种软、硬…...

【算法设计与分析】STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划;各类算法代码汇总

文章目录前言一、STL容器二、递归算法三、分治法四、蛮力法五、回溯法六、分支限界法七、贪心法八、动态规划前言 本篇共为8类算法(STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划)&#xff0c;则各取每类算法中的几例经典示例进行展示。 一、STL容…...

vue初识

第一次接触vue&#xff0c;前端的html,css,jquery,js学习也有段时间了&#xff0c;就照着B站的视频简单看了一些&#xff0c;了解了一些简单的用法&#xff0c;这边做一个记录。 官网 工具&#xff1a;使用VSCode以及Live Server插件&#xff08;能够实时预览&#xff09; 第…...

火山引擎入选《2022 爱分析 · DataOps 厂商全景报告》,旗下 DataLeap 产品能力获认可

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 2 月 9 日&#xff0c;国内领先的数字化市场研究与咨询机构爱分析发布了《2022 爱分析DataOps 厂商全景报告》&#xff08;以下简称报告&#xff09;&#xff0c;报…...

java-spring_bean的生命周期

生命周期&#xff1a;从创建到消亡的完整过程初始化容器 1. 创建对象&#xff08;内存分配 &#xff09; 2. 执行构造方法 3. 执行属性注入&#xff08;set操作&#xff09; 4. 执行bean初始化方法 使用bean 执行业务操作 关闭/销毁容器 1.执行bean销毁方法 bean销毁时机 容…...

微服务相关概念

一、谈谈你对微服务的理解&#xff0c;微服务有哪些优缺点&#xff1f;微服务是由Martin Fowler大师提出的。微服务是一种架构风格&#xff0c;通过将大型的单体应用划分为比较小的服务单元&#xff0c;从而降低整个系统的复杂度。优点&#xff1a;1、服务部署更灵活&#xff1…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...