当前位置: 首页 > news >正文

Oracle-Mysql 函数转换

Oracle-Mysql 函数转换

      • limit <=> ROWNUM
      • cast <=> TO_NUMBER
        • cast as signed
        • cast as unsigned
      • regexp 'a_\\d+' <=> REGEXP_LIKE
      • schema() <=> SELECT USER FROM DUAL
      • information_schema.COLUMNS表 <=> ALL_TAB_COLUMNS表
      • unix_timestamp
      • from_unixtime <=> TO_TIMESTAMP / NUMTODSINTERVAL
      • GROUP_CONCAT <=> LISTAGG
      • DATE_FORMAT <=> TO_CHAR

limit <=> ROWNUM

MySQL:

select * from table1 limit 10

Oracle:

SELECT * FROM (SELECT *, ROWNUM as rnumFROM table1 
)
WHERE 10 >= rnum

cast <=> TO_NUMBER

cast as signed

MySQL:

select cast(substr(t1.COLUMN_NAME, 6) as signed ) from dual

Oracle:

select TO_NUMBER(SUBSTR(t1.COLUMN_NAME, 6))  from dual

cast as unsigned

MySQL:

select cast(t1.COLUMN_NAME as unsigned) from dual

Oracle:

select TO_NUMBER(t1.COLUMN_NAME )  from dual

regexp ‘a_\d+’ <=> REGEXP_LIKE

MySQL:

select * from dual
where COLUMN_NAME regexp 'a_\\d+'

Oracle:

select * from dual
where  REGEXP_LIKE(COLUMN_NAME,'a_[0-9]+')

schema() <=> SELECT USER FROM DUAL

MySQL:

schema()

Oracle:

SELECT USER FROM DUAL

information_schema.COLUMNS表 <=> ALL_TAB_COLUMNS表

MySQL:

select * from information_schema.COLUMNS

Oracle:

select * from  ALL_TAB_COLUMNS

unix_timestamp

MySQL:

select unix_timestamp(t3.createTime)* 1000 where dual

Oracle:

select (t3.createTime - TO_DATE('1970-01-01', 'YYYY-MM-DD'))*86400000 from dual

from_unixtime <=> TO_TIMESTAMP / NUMTODSINTERVAL

MySQL:

select  from_unixtime(t4.OPERATE_DATE / 1000, '%Y-%m-%d %H:%m:%s') 
from dual

Oracle:

select TO_TIMESTAMP('1970-01-01', 'YYYY-MM-DD') + NUMTODSINTERVAL(t1.start_time / 1000, 'SECOND')from dual

GROUP_CONCAT <=> LISTAGG

MySQL:

select GROUP_CONCAT(ename order by t1.ename separator ',') AS employees
from dual

Oracle:

select LISTAGG(ename, ',') WITHIN GROUP (ORDER BY ename) AS employees
from dual

DATE_FORMAT <=> TO_CHAR

MySQL:

select date_format(update_time, '%Y-%m-%d %H:%i:%S')
from dual

Oracle:

select TO_CHAR(update_time, 'YYYY-MM-DD HH24:MI:SS') 
from dual

相关文章:

Oracle-Mysql 函数转换

Oracle-Mysql 函数转换limit <> ROWNUMcast <> TO_NUMBERcast as signedcast as unsignedregexp a_\\d <> REGEXP_LIKEschema() <> SELECT USER FROM DUALinformation_schema.COLUMNS表 <> ALL_TAB_COLUMNS表unix_timestampfrom_unixtime <&g…...

【Kafka】一.认识Kafka

kafka是一个分布式消息队列。由 Scala 开发的高性能跨语言分布式消息队列&#xff0c;单机吞吐量可以到达 10w 级&#xff0c;消息延迟在 ms 级。具有高性能、持久化、多副本备份、横向扩展能力。 生产者往队列里写消息&#xff0c;消费者从队列里取消息进行业务逻辑。 一般在…...

Linux软件管理YUM

目录 yum配置文件 创建仓库 yum查询功能 yum安装与升级功能 yum删除功能 yum仓库产生的问题和解决之道 yum与dnf 网络源 YUM就是通过分析RPM的标头数据后&#xff0c;根据各软件的相关性制作出属性依赖时的解决方案&#xff0c;然后可以自动处理软件的依赖属性问题&…...

【自学MYSQL】MySQL Windows安装

MySQL Windows安装 MySQL Windows下载 首先&#xff0c;我们打开 MySQL 的官网&#xff0c;网址如下&#xff1a; https://dev.mysql.com/downloads/mysql/在官网的主页&#xff0c;我们首先根据我们的操作系统&#xff0c;选择对应的系统&#xff0c;这里我们选择 Windows&…...

Linux c编程之常用技巧

一、说明 在Linux C的实际编程应用中,有很多有用的实践技巧,编程中掌握这些知识,会对编程有事半功倍的效果。 二、常用技巧 2.1 if 变量条件的写法 main.c: #include <stdio.h>int main(int argc, char *argv[]) {int a =...

21- 朴素贝叶斯 (NLP自然语言算法) (算法)

朴素贝叶斯要点 概率图模型算法往往应用于NLP自然语言处理领域。根据文本内容判定 分类 。 概率密度公式&#xff1a; 高斯朴素贝叶斯算法: from sklearn.naive_bayes import GaussianNB model GaussianNB() model.fit(X_train,y_train) 伯努利分布朴素贝叶斯算法 fro…...

设计模式第七讲-外观模式、适配器模式、模板方法模式详解

一. 外观模式 1. 背景 在现实生活中&#xff0c;常常存在办事较复杂的例子&#xff0c;如办房产证或注册一家公司&#xff0c;有时要同多个部门联系&#xff0c;这时要是有一个综合部门能解决一切手续问题就好了。 软件设计也是这样&#xff0c;当一个系统的功能越来越强&…...

flutter-第1章-配置环境

flutter-第1章-配置环境 本文针对Windows系统。 一、安装Android Studio 从Android Studio官网下载最新版本&#xff0c;一直默认安装就行。 安装完成要下载SDK&#xff0c;可能会需要科学上网。 打开AS&#xff0c;随便创建一个新项目。 点击右上角的SDK Manager 找到SDK…...

“消息驱动、事件驱动、流 ”的消息模型

文章目录背景消息驱动 Message-Driven事件驱动 Event-Driven流 Streaming事件规范标准简介&#xff1a; 本文旨在帮助大家对近期消息领域的高频词“消息驱动&#xff08;Message-Driven&#xff09;&#xff0c;事件驱动&#xff08;Event-Driven&#xff09;和流&#xff08;S…...

量化股票配对交易可以用Python语言实现吗?

量化股票配对交易可以用Python语言实现吗&#xff1f;Python 是一种流行的编程语言&#xff0c;可用于所有类型的领域&#xff0c;包括数据科学。有大量软件包可以帮助您实现目标&#xff0c;许多公司使用 Python 来开发与金融界相关的以数据为中心的应用程序和科学计算。 最重…...

机器学习洞察 | 一文带你“讲透” JAX

在上篇文章中&#xff0c;我们详细分享了 JAX 这一新兴的机器学习模型的发展和优势&#xff0c;本文我们将通过 Amazon SageMaker 示例展示如何部署并使用 JAX。JAX 的工作机制JAX 的完整工作机制可以用下面这幅图详细解释:图片来源&#xff1a;“Intro to JAX” video on YouT…...

OpenFaaS介绍

FaaS 云计算时代出现了大量XaaS形式的概念&#xff0c;从IaaS(Infrastructure as a Service)、PaaS(Platform as a Service)、SaaS(Software as a Service)到容器云引领的CaaS(Containers as a Service)&#xff0c;再到火热的微服务架构&#xff0c;它们都在试着将各种软、硬…...

【算法设计与分析】STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划;各类算法代码汇总

文章目录前言一、STL容器二、递归算法三、分治法四、蛮力法五、回溯法六、分支限界法七、贪心法八、动态规划前言 本篇共为8类算法(STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划)&#xff0c;则各取每类算法中的几例经典示例进行展示。 一、STL容…...

vue初识

第一次接触vue&#xff0c;前端的html,css,jquery,js学习也有段时间了&#xff0c;就照着B站的视频简单看了一些&#xff0c;了解了一些简单的用法&#xff0c;这边做一个记录。 官网 工具&#xff1a;使用VSCode以及Live Server插件&#xff08;能够实时预览&#xff09; 第…...

火山引擎入选《2022 爱分析 · DataOps 厂商全景报告》,旗下 DataLeap 产品能力获认可

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 2 月 9 日&#xff0c;国内领先的数字化市场研究与咨询机构爱分析发布了《2022 爱分析DataOps 厂商全景报告》&#xff08;以下简称报告&#xff09;&#xff0c;报…...

java-spring_bean的生命周期

生命周期&#xff1a;从创建到消亡的完整过程初始化容器 1. 创建对象&#xff08;内存分配 &#xff09; 2. 执行构造方法 3. 执行属性注入&#xff08;set操作&#xff09; 4. 执行bean初始化方法 使用bean 执行业务操作 关闭/销毁容器 1.执行bean销毁方法 bean销毁时机 容…...

微服务相关概念

一、谈谈你对微服务的理解&#xff0c;微服务有哪些优缺点&#xff1f;微服务是由Martin Fowler大师提出的。微服务是一种架构风格&#xff0c;通过将大型的单体应用划分为比较小的服务单元&#xff0c;从而降低整个系统的复杂度。优点&#xff1a;1、服务部署更灵活&#xff1…...

论文解读:(TransA)TransA: An Adaptive Approach for Knowledge Graph Embedding

简介 先前的知识表示方法&#xff1a;TransE、TransH、TransR、TransD、TranSparse等。的损失函数仅单纯的考虑hrh rhr和ttt在某个语义空间的欧氏距离&#xff0c;认为只要欧式距离最小&#xff0c;就认为h和th和th和t的关系为r。显然这种度量指标过于简单&#xff0c;虽然先…...

js将数字转十进制+十六进制(联动el-ui下拉选择框)

十进制与十六进制的整数转化一、十进制转十六进制二、十六进制转十进制三、联动demo一、十进制转十六进制 正则表达式&#xff1a; /^([0-9]||([1-9][0-9]{0,}))$/解析&#xff1a;[0-9]代表个位数&#xff0c;([1-9][0-9]{0,})代表十位及以上 二、十六进制转十进制 正则表达…...

关于RedissonLock的一些所思

关于RedissonClient.getLock() 我们一般的使用Redisson的方式就是&#xff1a; RLock myLock redissonClient.getLock("my_order");//myLock.lock();//myLock.tryLock();就上面的例子里&#xff0c;如果某个线程已经拿到了my_order的锁&#xff0c;那别的线程调用m…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...