【自学MYSQL】MySQL Windows安装
MySQL Windows安装
MySQL Windows下载
首先,我们打开 MySQL 的官网,网址如下:
https://dev.mysql.com/downloads/mysql/
在官网的主页,我们首先根据我们的操作系统,选择对应的系统,这里我们选择 Windows,接着选择对应的版本,点击 Download ,如下:

点击 Download,然后选择,No thanks,即可开始下载:

MySQL解压文件
下载好的 Mysql 文件,是一个压缩包的格式,如下:

我们使用压缩工具,将该文件解压,解压后显示如下:

MySQL修改配置文件
在刚刚解压的文件夹中创建 data 文件夹和 my.ini 文件,创建好后,目录如下:

我们使用记事本编辑 my.ini 文件,内容如下:
[mysqld]
# 设置3306端口
port=3306
# 设置mysql的安装目录
basedir=D:\\Soft\\wamp2\\mysql
# 设置mysql数据库的数据的存放目录。
datadir=D:\\Soft\\wamp2\\mysql\\data
# 允许最大连接数
max_connections=200
# 允许连接失败的次数。这是为了防止有人从该主机试图攻击数据库系统
max_connect_errors=10
# 服务端使用的字符集默认为UTF8
character-set-server=utf8
# 创建新表时将使用的默认存储引擎
default-storage-engine=INNODB
[mysql]
# 设置mysql客户端默认字符集
default-character-set=utf8
[client]
# 设置mysql客户端连接服务端时默认使用的端口
port=3306
default-character-set=utf8
MySQL环境变量配置
首先,我们在我的电脑,右键点击属性,点击高级属性,如下:

点击环境变量,如下:

点击新建,如下:

新建用户变量,变量名为 MYSQL_HOME ,变量值为 MySQL 安装地址,此处为 D:\Soft\wamp2\mysql,如下:

在用户变量中,找到 Path 变量,进行编辑,如下:

编辑环境变量,点击新建,输入 %MYSQL_HOME%\bin ,然后点击确定,如下:

最后点击确定,如下:

此时,我们的 Mysql 环境变量就配置好了。
MySQL初始化
打开 cmd 运行 MySQL,如果用普通的命令行打开会报错,如下:

此时,我们需要以管理员方式打开命令行,如下:

初始化 MYSQL,先到 MYSQL 目录下,如下:

输入以下命令,进行初始化,此时生成了临时密码,后面需要用到,如下:

进入 bin 目录,如下:

执行命令 mysqld -install,如下:

启动 mysql 服务 ,如下:

运行 mysql,输入命令 mysql -uroot -p ,如下:

输入刚刚的临时密码,如下:

更换临时密码,此处新密码为 123456, 输入命令:ALERT USER root@localhost IDENTIFIED BY ‘123456’,如下:

退出 mysql,输入命令 exit,如下:

使用新密码重新运行 mysql,输入命令:mysql -uroot -p,如下:

相关文章:
【自学MYSQL】MySQL Windows安装
MySQL Windows安装 MySQL Windows下载 首先,我们打开 MySQL 的官网,网址如下: https://dev.mysql.com/downloads/mysql/在官网的主页,我们首先根据我们的操作系统,选择对应的系统,这里我们选择 Windows&…...
Linux c编程之常用技巧
一、说明 在Linux C的实际编程应用中,有很多有用的实践技巧,编程中掌握这些知识,会对编程有事半功倍的效果。 二、常用技巧 2.1 if 变量条件的写法 main.c: #include <stdio.h>int main(int argc, char *argv[]) {int a =...
21- 朴素贝叶斯 (NLP自然语言算法) (算法)
朴素贝叶斯要点 概率图模型算法往往应用于NLP自然语言处理领域。根据文本内容判定 分类 。 概率密度公式: 高斯朴素贝叶斯算法: from sklearn.naive_bayes import GaussianNB model GaussianNB() model.fit(X_train,y_train) 伯努利分布朴素贝叶斯算法 fro…...
设计模式第七讲-外观模式、适配器模式、模板方法模式详解
一. 外观模式 1. 背景 在现实生活中,常常存在办事较复杂的例子,如办房产证或注册一家公司,有时要同多个部门联系,这时要是有一个综合部门能解决一切手续问题就好了。 软件设计也是这样,当一个系统的功能越来越强&…...
flutter-第1章-配置环境
flutter-第1章-配置环境 本文针对Windows系统。 一、安装Android Studio 从Android Studio官网下载最新版本,一直默认安装就行。 安装完成要下载SDK,可能会需要科学上网。 打开AS,随便创建一个新项目。 点击右上角的SDK Manager 找到SDK…...
“消息驱动、事件驱动、流 ”的消息模型
文章目录背景消息驱动 Message-Driven事件驱动 Event-Driven流 Streaming事件规范标准简介: 本文旨在帮助大家对近期消息领域的高频词“消息驱动(Message-Driven),事件驱动(Event-Driven)和流(S…...
量化股票配对交易可以用Python语言实现吗?
量化股票配对交易可以用Python语言实现吗?Python 是一种流行的编程语言,可用于所有类型的领域,包括数据科学。有大量软件包可以帮助您实现目标,许多公司使用 Python 来开发与金融界相关的以数据为中心的应用程序和科学计算。 最重…...
机器学习洞察 | 一文带你“讲透” JAX
在上篇文章中,我们详细分享了 JAX 这一新兴的机器学习模型的发展和优势,本文我们将通过 Amazon SageMaker 示例展示如何部署并使用 JAX。JAX 的工作机制JAX 的完整工作机制可以用下面这幅图详细解释:图片来源:“Intro to JAX” video on YouT…...
OpenFaaS介绍
FaaS 云计算时代出现了大量XaaS形式的概念,从IaaS(Infrastructure as a Service)、PaaS(Platform as a Service)、SaaS(Software as a Service)到容器云引领的CaaS(Containers as a Service),再到火热的微服务架构,它们都在试着将各种软、硬…...
【算法设计与分析】STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划;各类算法代码汇总
文章目录前言一、STL容器二、递归算法三、分治法四、蛮力法五、回溯法六、分支限界法七、贪心法八、动态规划前言 本篇共为8类算法(STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划),则各取每类算法中的几例经典示例进行展示。 一、STL容…...
vue初识
第一次接触vue,前端的html,css,jquery,js学习也有段时间了,就照着B站的视频简单看了一些,了解了一些简单的用法,这边做一个记录。 官网 工具:使用VSCode以及Live Server插件(能够实时预览) 第…...
火山引擎入选《2022 爱分析 · DataOps 厂商全景报告》,旗下 DataLeap 产品能力获认可
更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 2 月 9 日,国内领先的数字化市场研究与咨询机构爱分析发布了《2022 爱分析DataOps 厂商全景报告》(以下简称报告),报…...
java-spring_bean的生命周期
生命周期:从创建到消亡的完整过程初始化容器 1. 创建对象(内存分配 ) 2. 执行构造方法 3. 执行属性注入(set操作) 4. 执行bean初始化方法 使用bean 执行业务操作 关闭/销毁容器 1.执行bean销毁方法 bean销毁时机 容…...
微服务相关概念
一、谈谈你对微服务的理解,微服务有哪些优缺点?微服务是由Martin Fowler大师提出的。微服务是一种架构风格,通过将大型的单体应用划分为比较小的服务单元,从而降低整个系统的复杂度。优点:1、服务部署更灵活࿱…...
论文解读:(TransA)TransA: An Adaptive Approach for Knowledge Graph Embedding
简介 先前的知识表示方法:TransE、TransH、TransR、TransD、TranSparse等。的损失函数仅单纯的考虑hrh rhr和ttt在某个语义空间的欧氏距离,认为只要欧式距离最小,就认为h和th和th和t的关系为r。显然这种度量指标过于简单,虽然先…...
js将数字转十进制+十六进制(联动el-ui下拉选择框)
十进制与十六进制的整数转化一、十进制转十六进制二、十六进制转十进制三、联动demo一、十进制转十六进制 正则表达式: /^([0-9]||([1-9][0-9]{0,}))$/解析:[0-9]代表个位数,([1-9][0-9]{0,})代表十位及以上 二、十六进制转十进制 正则表达…...
关于RedissonLock的一些所思
关于RedissonClient.getLock() 我们一般的使用Redisson的方式就是: RLock myLock redissonClient.getLock("my_order");//myLock.lock();//myLock.tryLock();就上面的例子里,如果某个线程已经拿到了my_order的锁,那别的线程调用m…...
C++:倒牛奶问题
文章目录题目一、输入二、输出三、思路代码题目 农业,尤其是生产牛奶,是一个竞争激烈的行业。Farmer John发现如果他不在牛奶生产工艺上有所创新,他的乳制品生意可能就会受到重创! 幸运的是,Farmer John想出了一个好主…...
MySQL8.x group_by报错的4种解决方法
在我们使用MySQL的时候总是会遇到各种各样的报错,让人头痛不已。其中有一种报错,sql_modeonly_full_group_by,十分常见,每次都是老长的一串出现,然后带走你所有的好心情,如:LIMIT 0, 1000 Error…...
具有非线性动态行为的多车辆列队行驶问题的基于强化学习的方法
论文地址: Reinforcement Learning Based Approach for Multi-Vehicle Platooning Problem with Nonlinear Dynamic Behavior 摘要 协同智能交通系统领域的最新研究方向之一是车辆编队。研究人员专注于通过传统控制策略以及最先进的深度强化学习 (RL) 方法解决自动…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
