当前位置: 首页 > news >正文

论文解读:(TransA)TransA: An Adaptive Approach for Knowledge Graph Embedding

简介

先前的知识表示方法:TransE、TransH、TransR、TransD、TranSparse等。的损失函数仅单纯的考虑h+rh + rh+rttt在某个语义空间的欧氏距离,认为只要欧式距离最小,就认为h和th和tht的关系为r。显然这种度量指标过于简单,虽然先前的工作在得分函数上做出了不错的改进,但训练的损失函数约束了表示的能力,因此,本文TransA模型的提出,主要对损失函数进行改进

虽然TransA的提出是在TransD、TranSparse之前,但实践表明TransA的提出很有价值

简要信息

在这里插入图片描述

摘要与引言

知识表示在人工智能领域内是非常重要的任务,许多研究试图将知识库中的实体和关系表示为一个连续的向量。通过这些尝试,基于翻译模型的表示方法是通过最小化头实体到尾实体的损失函数。尽管这些策略非常成功,但其损失函数过于简单,不能够很好的表示复杂多变的知识图谱。为了解决这些问题,我们提出TransA,一种对表示向量的自适应度量方法。根据度量学习的想法提出一个更灵活的嵌入方法。实验在几个基线数据集上完成,我们的模型获得了最优效果。
 * 根据度量学习提出一个更为灵活的嵌入方法。
 最近研究均涉及到知识图谱,像问答系统等需要对图谱进行表示,现如今提出的方法有TransE、TransH等。然而这些方法的度量标准仅仅是实体之间的欧氏距离,过于简单的损失函数不能够处理复杂多变的图谱
 (1)由于缺乏灵活的损失函数,当前的翻译模型均是应用球形等位超平面,因此越靠近中心,实体对与对应关系的向量越相似。如图所示,这是TransE模型在FreeBase上训练的向量通过PCA降维得到的图
在这里插入图片描述
橘黄色的为头实体,橘黄色的线与箭头则为对应的关系向量。蓝色的叉表示正确的尾实体,红色的圆点则是错误的尾实体,可知当简单的使用欧式距离来评判,会掺和进大量错误的实体。由于图谱是复杂多变的**,这一点很难避免**

)另外,由于过于简单的损失函数,使得当前几种翻译模型在对向量的每一个维度的训练处理方法相同。如图所示:

在这里插入图片描述
在这里插入图片描述

相关工作主要贡献

在这里插入图片描述

TransA

自适应度量分值函数

在这里插入图片描述

椭球面

在这里插入图片描述

特征加权

在这里插入图片描述

实现细节

采用距离排序损失函数
在这里插入图片描述

可以采用拉格朗日求梯度进行最小化。

经验

度量学习没了解过,先大致了解,后续深入研究,将其全部都搞定都行啦的样子与打算。

相关文章:

论文解读:(TransA)TransA: An Adaptive Approach for Knowledge Graph Embedding

简介 先前的知识表示方法:TransE、TransH、TransR、TransD、TranSparse等。的损失函数仅单纯的考虑hrh rhr和ttt在某个语义空间的欧氏距离,认为只要欧式距离最小,就认为h和th和th和t的关系为r。显然这种度量指标过于简单,虽然先…...

js将数字转十进制+十六进制(联动el-ui下拉选择框)

十进制与十六进制的整数转化一、十进制转十六进制二、十六进制转十进制三、联动demo一、十进制转十六进制 正则表达式: /^([0-9]||([1-9][0-9]{0,}))$/解析:[0-9]代表个位数,([1-9][0-9]{0,})代表十位及以上 二、十六进制转十进制 正则表达…...

关于RedissonLock的一些所思

关于RedissonClient.getLock() 我们一般的使用Redisson的方式就是: RLock myLock redissonClient.getLock("my_order");//myLock.lock();//myLock.tryLock();就上面的例子里,如果某个线程已经拿到了my_order的锁,那别的线程调用m…...

C++:倒牛奶问题

文章目录题目一、输入二、输出三、思路代码题目 农业,尤其是生产牛奶,是一个竞争激烈的行业。Farmer John发现如果他不在牛奶生产工艺上有所创新,他的乳制品生意可能就会受到重创! 幸运的是,Farmer John想出了一个好主…...

MySQL8.x group_by报错的4种解决方法

在我们使用MySQL的时候总是会遇到各种各样的报错,让人头痛不已。其中有一种报错,sql_modeonly_full_group_by,十分常见,每次都是老长的一串出现,然后带走你所有的好心情,如:LIMIT 0, 1000 Error…...

具有非线性动态行为的多车辆列队行驶问题的基于强化学习的方法

论文地址: Reinforcement Learning Based Approach for Multi-Vehicle Platooning Problem with Nonlinear Dynamic Behavior 摘要 协同智能交通系统领域的最新研究方向之一是车辆编队。研究人员专注于通过传统控制策略以及最先进的深度强化学习 (RL) 方法解决自动…...

TrueNas篇-硬盘直通

硬盘直通 在做硬盘直通之前,在trueNas(或者其他虚拟机)内是检测不到安装的硬盘的。 在pve节点查看硬盘信息 打开pve的shell控制台 输入下面的命令查看硬盘信息: ls -l /dev/disk/by-id/该命令会显示出实际所有的硬盘设备信息,其中ata代…...

手机子品牌的“性能战事”:一场殊途同归的大混战

在智能手机行业进入存量市场后,竞争更加白热化。当各国产手机品牌集体冲高端,旗下子品牌们也正厮杀正酣,显现出刀光剑影。处理器、屏幕、内存、价格等各方面无不互相对标,激烈程度并不亚于高端之争。源于OPPO的中端手机品牌realme…...

dockerfile自定义镜像安装jdk8,nginx,后端jar包和前端静态文件,并启动容器访问

dockerfile自定义镜像安装jdk8,nginx,后端jar包和前端静态文件,并启动容器访问简介centos7系统里面我准备的服务如下:5gsignplay-web静态文件内容如下:nginx.conf配置文件内容如下:Dockerfile内容如下:run.sh启动脚本内容如下:制作镜像并启动访问简介 通过用docker…...

MongoDB 全文检索

MongoDB 全文检索 全文检索对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。 这个过程类似于通过字典中的检索字表查字的过…...

JS中声明变量,使用 var、let、const的区别

一、var 的使用 1.1、var 的作用域 1、var可以在全局范围声明或函数/局部范围内声明。当在最外层函数的外部声明var变量时,作用域是全局的。这意味着在最外层函数的外部用var声明的任何变量都可以在windows中使用。 2、当在函数中声明var时,作用域是局…...

汽车改装避坑指南:大尾翼

今天给大家讲一个改装的误区:大尾翼 很多车友看到一些汽车加了大尾翼,非常的好看,就想给自己的车也加装一个。 那你有没有想过,尾翼这东西你真的需要吗? 赛车为什么加尾翼?尾翼主要是给车尾部的一个压低提供…...

【Unity资源下载】POLYGON Dungeon Realms - Low Poly 3D Art by Synty

$149.99 Synty Studios 一个史诗般的低多边形资产包,包括人物、道具、武器和环境资产,用于创建一个以奇幻为主题的多边形风格游戏。 模块化的部分很容易在各种组合中拼凑起来。 包包含超过1,118个详细预制件。 主要特点 ◼ ◼ 完全模块化的地下城!包…...

知识汇总:Python办公自动化应该学习哪些内容

当前python自动化越来越受到欢迎,python一度成为了加班族的福音。还有大部分人想利用python自动化来简化工作,不知道从何处下手,所以,这里整理了一下python自动化过程中的各种办公场景以及需要用到的python知识点。 Excel办公自动…...

软件架构知识5-架构设计流程

一、识别复杂度 举例:设计一个亿级用户平台设计,直接对标腾讯的 QQ,按照腾讯 QQ的用户量级和功能复杂度进行设计,高性能、高可用、可扩展、安全等技术一应俱全,一开始就设计出了 40 多个子系统,然后投入大…...

【银河麒麟V10操作系统】修改屏幕分辨率的方法

文章目录前言系统概述方法1:使用命令行修改方法2:写文件修改方法3:界面端修改的方法前言 本文记录了银河麒麟V10系统修改分辨率的方法。 使用命令行修改写文件修改界面端修改的方法 系统概述 方法1:使用命令行修改 打开终端&am…...

pdf生成为二维码

当今数字时代,人们越来越依赖在线工具来处理各种任务,比如合并、拆分和压缩PDF等。Mai File就是这样一个在线工具,它可以将PDF文件转换成在线链接,方便您和他人轻松地查看和共享文件。 Mai File的使用非常简单,您只需…...

Yaklang websocket劫持教程

背景 随着Web应用的发展与动态网页的普及,越来越多的场景需要数据动态刷新功能。在早期时,我们通常使用轮询的方式(即客户端每隔一段时间询问一次服务器)来实现,但是这种实现方式缺点很明显: 大量请求实际上是无效的,这导致了大量…...

基于AIOT技术的智慧校园空调集中管控系统设计与实现

毕业论文(设计)题 目 基于AIOT技术的智慧校园空调集中管控系统设计与实现指导老师 XXXX 专业班级 电子商务2XXXX 姓 名 XXXX 学 号 20XXXXXXXXX 20XX年XX月XX日摘要近年来,随着物联网技术和人工智能技术的快速发展,智慧校园逐渐…...

【每日一题】 将一句话单词倒置,标点不倒置

用C语言将一句话的单词倒置,标点不倒置。 比如输入: i like shanghai. 输出得到: shanghai. like i 这道题目有很多种做法,既可以用递归,也可以分成两部分函数来写,本文就详细来讲解分装为两个函数的做法。…...

【Oracle APEX开发小技巧12】

有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...

django filter 统计数量 按属性去重

在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...

蓝桥杯 冶炼金属

原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 ​…...