【Deformable Convolution】可变形卷积记录
every blog every motto: You can do more than you think.
https://blog.csdn.net/weixin_39190382?type=blog
0. 前言
可变形卷积记录
1. 正文
预印版:
Deformable Convolutional Networks v1
Deformable ConvNets v2: More Deformable, Better Results
发表版:
Deformable Convolutional Networks
1.1 简介

- a普通卷积
- b,c,d 可变卷积
在图a标准卷积核参数中添加一个方向参数(图b绿色箭头),使得卷积核可以变为任意形状。
其中,b,c是可变卷积的特殊形式。
1.2 为什么要用可变形卷积
我们知道,卷积核的目的是为了提取输入的特征,在传统卷积中卷积核通常是固定尺寸。这种卷积核存在的最大问题是对未知变化的适应性,泛化能力不强。

- 最上层的图像是大小不同物体的激活单元
- 中间层是为了得到顶层激活单元所进行的采样过程。
- 左图是标准的3*3采样
- 右图是非标准的采样,依然是3*3
- 最下层是为了得到中间层进行的采样。
可以发现,可变形卷积在采样时更贴近物体的形状和尺寸,而标准卷积无法做到。
1.3 实现
如前所述,可变形卷积在传统卷积的基础上增加了卷积核的方向向量,使得卷积核的形态更贴近物体,那么该过程是如何实现的?
- 开始和正常卷积一样,利用传统卷积提取特征图
- 把得到的特在图作为输入,对特征图再施加一个卷积,这么做的目的是为了得到可变形卷积的偏移量
- 上面两个特在图相加
- 偏移层是2N,是因为在平面上做移动,需要改变x和y两个方向。
- 在训练时,用于生成特征图的卷积核和用于生成偏移量的卷积核是同步学习的
注意: 特征图里面的值是浮点数,而坐标是整数。这里面需要涉及到类型转换,具体参考后面链接


参考9中,介绍了v2版本增加了对偏移增加权重,比较有意思,有兴趣的可以看下。
- v1中引入的offset是要寻找有效信息的区域位置
- v2中引入权重系数是要给找到的这个位置赋予权重,这两方面保证了有效信息的准确提取。
参考
[1] Deformable Convolutional Networks v1
[2] Deformable ConvNets v2: More Deformable, Better Results
[3] Deformable Convolutional Networks
[4] https://blog.csdn.net/LEEANG121/article/details/104234927
[5] https://blog.csdn.net/scut_salmon/article/details/97050908
[6] https://blog.csdn.net/mykeylock/article/details/77746499
[7] https://blog.csdn.net/kevin_zhao_zl/article/details/89319756
[8] https://blog.csdn.net/jiangqixing0728/article/details/126269423
[9] https://www.jianshu.com/p/55ddeb498c65
相关文章:
【Deformable Convolution】可变形卷积记录
every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 可变形卷积记录 1. 正文 预印版: Deformable Convolutional Networks v1 Deformable ConvNets v2: More Deformable, Better Results 发表版…...
Oracle-Mysql 函数转换
Oracle-Mysql 函数转换limit <> ROWNUMcast <> TO_NUMBERcast as signedcast as unsignedregexp a_\\d <> REGEXP_LIKEschema() <> SELECT USER FROM DUALinformation_schema.COLUMNS表 <> ALL_TAB_COLUMNS表unix_timestampfrom_unixtime <&g…...
【Kafka】一.认识Kafka
kafka是一个分布式消息队列。由 Scala 开发的高性能跨语言分布式消息队列,单机吞吐量可以到达 10w 级,消息延迟在 ms 级。具有高性能、持久化、多副本备份、横向扩展能力。 生产者往队列里写消息,消费者从队列里取消息进行业务逻辑。 一般在…...
Linux软件管理YUM
目录 yum配置文件 创建仓库 yum查询功能 yum安装与升级功能 yum删除功能 yum仓库产生的问题和解决之道 yum与dnf 网络源 YUM就是通过分析RPM的标头数据后,根据各软件的相关性制作出属性依赖时的解决方案,然后可以自动处理软件的依赖属性问题&…...
【自学MYSQL】MySQL Windows安装
MySQL Windows安装 MySQL Windows下载 首先,我们打开 MySQL 的官网,网址如下: https://dev.mysql.com/downloads/mysql/在官网的主页,我们首先根据我们的操作系统,选择对应的系统,这里我们选择 Windows&…...
Linux c编程之常用技巧
一、说明 在Linux C的实际编程应用中,有很多有用的实践技巧,编程中掌握这些知识,会对编程有事半功倍的效果。 二、常用技巧 2.1 if 变量条件的写法 main.c: #include <stdio.h>int main(int argc, char *argv[]) {int a =...
21- 朴素贝叶斯 (NLP自然语言算法) (算法)
朴素贝叶斯要点 概率图模型算法往往应用于NLP自然语言处理领域。根据文本内容判定 分类 。 概率密度公式: 高斯朴素贝叶斯算法: from sklearn.naive_bayes import GaussianNB model GaussianNB() model.fit(X_train,y_train) 伯努利分布朴素贝叶斯算法 fro…...
设计模式第七讲-外观模式、适配器模式、模板方法模式详解
一. 外观模式 1. 背景 在现实生活中,常常存在办事较复杂的例子,如办房产证或注册一家公司,有时要同多个部门联系,这时要是有一个综合部门能解决一切手续问题就好了。 软件设计也是这样,当一个系统的功能越来越强&…...
flutter-第1章-配置环境
flutter-第1章-配置环境 本文针对Windows系统。 一、安装Android Studio 从Android Studio官网下载最新版本,一直默认安装就行。 安装完成要下载SDK,可能会需要科学上网。 打开AS,随便创建一个新项目。 点击右上角的SDK Manager 找到SDK…...
“消息驱动、事件驱动、流 ”的消息模型
文章目录背景消息驱动 Message-Driven事件驱动 Event-Driven流 Streaming事件规范标准简介: 本文旨在帮助大家对近期消息领域的高频词“消息驱动(Message-Driven),事件驱动(Event-Driven)和流(S…...
量化股票配对交易可以用Python语言实现吗?
量化股票配对交易可以用Python语言实现吗?Python 是一种流行的编程语言,可用于所有类型的领域,包括数据科学。有大量软件包可以帮助您实现目标,许多公司使用 Python 来开发与金融界相关的以数据为中心的应用程序和科学计算。 最重…...
机器学习洞察 | 一文带你“讲透” JAX
在上篇文章中,我们详细分享了 JAX 这一新兴的机器学习模型的发展和优势,本文我们将通过 Amazon SageMaker 示例展示如何部署并使用 JAX。JAX 的工作机制JAX 的完整工作机制可以用下面这幅图详细解释:图片来源:“Intro to JAX” video on YouT…...
OpenFaaS介绍
FaaS 云计算时代出现了大量XaaS形式的概念,从IaaS(Infrastructure as a Service)、PaaS(Platform as a Service)、SaaS(Software as a Service)到容器云引领的CaaS(Containers as a Service),再到火热的微服务架构,它们都在试着将各种软、硬…...
【算法设计与分析】STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划;各类算法代码汇总
文章目录前言一、STL容器二、递归算法三、分治法四、蛮力法五、回溯法六、分支限界法七、贪心法八、动态规划前言 本篇共为8类算法(STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划),则各取每类算法中的几例经典示例进行展示。 一、STL容…...
vue初识
第一次接触vue,前端的html,css,jquery,js学习也有段时间了,就照着B站的视频简单看了一些,了解了一些简单的用法,这边做一个记录。 官网 工具:使用VSCode以及Live Server插件(能够实时预览) 第…...
火山引擎入选《2022 爱分析 · DataOps 厂商全景报告》,旗下 DataLeap 产品能力获认可
更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 2 月 9 日,国内领先的数字化市场研究与咨询机构爱分析发布了《2022 爱分析DataOps 厂商全景报告》(以下简称报告),报…...
java-spring_bean的生命周期
生命周期:从创建到消亡的完整过程初始化容器 1. 创建对象(内存分配 ) 2. 执行构造方法 3. 执行属性注入(set操作) 4. 执行bean初始化方法 使用bean 执行业务操作 关闭/销毁容器 1.执行bean销毁方法 bean销毁时机 容…...
微服务相关概念
一、谈谈你对微服务的理解,微服务有哪些优缺点?微服务是由Martin Fowler大师提出的。微服务是一种架构风格,通过将大型的单体应用划分为比较小的服务单元,从而降低整个系统的复杂度。优点:1、服务部署更灵活࿱…...
论文解读:(TransA)TransA: An Adaptive Approach for Knowledge Graph Embedding
简介 先前的知识表示方法:TransE、TransH、TransR、TransD、TranSparse等。的损失函数仅单纯的考虑hrh rhr和ttt在某个语义空间的欧氏距离,认为只要欧式距离最小,就认为h和th和th和t的关系为r。显然这种度量指标过于简单,虽然先…...
js将数字转十进制+十六进制(联动el-ui下拉选择框)
十进制与十六进制的整数转化一、十进制转十六进制二、十六进制转十进制三、联动demo一、十进制转十六进制 正则表达式: /^([0-9]||([1-9][0-9]{0,}))$/解析:[0-9]代表个位数,([1-9][0-9]{0,})代表十位及以上 二、十六进制转十进制 正则表达…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
