当前位置: 首页 > news >正文

【Deformable Convolution】可变形卷积记录

every blog every motto: You can do more than you think.
https://blog.csdn.net/weixin_39190382?type=blog

0. 前言

可变形卷积记录

1. 正文

预印版:
Deformable Convolutional Networks v1
Deformable ConvNets v2: More Deformable, Better Results
发表版:
Deformable Convolutional Networks

1.1 简介

在这里插入图片描述

  • a普通卷积
  • b,c,d 可变卷积
    在图a标准卷积核参数中添加一个方向参数(图b绿色箭头),使得卷积核可以变为任意形状。
    其中,b,c是可变卷积的特殊形式。

1.2 为什么要用可变形卷积

我们知道,卷积核的目的是为了提取输入的特征,在传统卷积中卷积核通常是固定尺寸。这种卷积核存在的最大问题是对未知变化的适应性,泛化能力不强。

在这里插入图片描述

  • 最上层的图像是大小不同物体的激活单元
  • 中间层是为了得到顶层激活单元所进行的采样过程。
    • 左图是标准的3*3采样
    • 右图是非标准的采样,依然是3*3
  • 最下层是为了得到中间层进行的采样。

可以发现,可变形卷积在采样时更贴近物体的形状和尺寸,而标准卷积无法做到。

1.3 实现

如前所述,可变形卷积在传统卷积的基础上增加了卷积核的方向向量,使得卷积核的形态更贴近物体,那么该过程是如何实现的?

  1. 开始和正常卷积一样,利用传统卷积提取特征图
  2. 把得到的特在图作为输入,对特征图再施加一个卷积,这么做的目的是为了得到可变形卷积的偏移量
  3. 上面两个特在图相加
  4. 偏移层是2N,是因为在平面上做移动,需要改变x和y两个方向。
  5. 在训练时,用于生成特征图的卷积核和用于生成偏移量的卷积核是同步学习的

注意: 特征图里面的值是浮点数,而坐标是整数。这里面需要涉及到类型转换,具体参考后面链接

请添加图片描述


请添加图片描述


参考9中,介绍了v2版本增加了对偏移增加权重,比较有意思,有兴趣的可以看下。

  • v1中引入的offset是要寻找有效信息的区域位置
  • v2中引入权重系数是要给找到的这个位置赋予权重,这两方面保证了有效信息的准确提取。

参考

[1] Deformable Convolutional Networks v1
[2] Deformable ConvNets v2: More Deformable, Better Results
[3] Deformable Convolutional Networks
[4] https://blog.csdn.net/LEEANG121/article/details/104234927
[5] https://blog.csdn.net/scut_salmon/article/details/97050908
[6] https://blog.csdn.net/mykeylock/article/details/77746499
[7] https://blog.csdn.net/kevin_zhao_zl/article/details/89319756
[8] https://blog.csdn.net/jiangqixing0728/article/details/126269423
[9] https://www.jianshu.com/p/55ddeb498c65

相关文章:

【Deformable Convolution】可变形卷积记录

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 可变形卷积记录 1. 正文 预印版: Deformable Convolutional Networks v1 Deformable ConvNets v2: More Deformable, Better Results 发表版…...

Oracle-Mysql 函数转换

Oracle-Mysql 函数转换limit <> ROWNUMcast <> TO_NUMBERcast as signedcast as unsignedregexp a_\\d <> REGEXP_LIKEschema() <> SELECT USER FROM DUALinformation_schema.COLUMNS表 <> ALL_TAB_COLUMNS表unix_timestampfrom_unixtime <&g…...

【Kafka】一.认识Kafka

kafka是一个分布式消息队列。由 Scala 开发的高性能跨语言分布式消息队列&#xff0c;单机吞吐量可以到达 10w 级&#xff0c;消息延迟在 ms 级。具有高性能、持久化、多副本备份、横向扩展能力。 生产者往队列里写消息&#xff0c;消费者从队列里取消息进行业务逻辑。 一般在…...

Linux软件管理YUM

目录 yum配置文件 创建仓库 yum查询功能 yum安装与升级功能 yum删除功能 yum仓库产生的问题和解决之道 yum与dnf 网络源 YUM就是通过分析RPM的标头数据后&#xff0c;根据各软件的相关性制作出属性依赖时的解决方案&#xff0c;然后可以自动处理软件的依赖属性问题&…...

【自学MYSQL】MySQL Windows安装

MySQL Windows安装 MySQL Windows下载 首先&#xff0c;我们打开 MySQL 的官网&#xff0c;网址如下&#xff1a; https://dev.mysql.com/downloads/mysql/在官网的主页&#xff0c;我们首先根据我们的操作系统&#xff0c;选择对应的系统&#xff0c;这里我们选择 Windows&…...

Linux c编程之常用技巧

一、说明 在Linux C的实际编程应用中,有很多有用的实践技巧,编程中掌握这些知识,会对编程有事半功倍的效果。 二、常用技巧 2.1 if 变量条件的写法 main.c: #include <stdio.h>int main(int argc, char *argv[]) {int a =...

21- 朴素贝叶斯 (NLP自然语言算法) (算法)

朴素贝叶斯要点 概率图模型算法往往应用于NLP自然语言处理领域。根据文本内容判定 分类 。 概率密度公式&#xff1a; 高斯朴素贝叶斯算法: from sklearn.naive_bayes import GaussianNB model GaussianNB() model.fit(X_train,y_train) 伯努利分布朴素贝叶斯算法 fro…...

设计模式第七讲-外观模式、适配器模式、模板方法模式详解

一. 外观模式 1. 背景 在现实生活中&#xff0c;常常存在办事较复杂的例子&#xff0c;如办房产证或注册一家公司&#xff0c;有时要同多个部门联系&#xff0c;这时要是有一个综合部门能解决一切手续问题就好了。 软件设计也是这样&#xff0c;当一个系统的功能越来越强&…...

flutter-第1章-配置环境

flutter-第1章-配置环境 本文针对Windows系统。 一、安装Android Studio 从Android Studio官网下载最新版本&#xff0c;一直默认安装就行。 安装完成要下载SDK&#xff0c;可能会需要科学上网。 打开AS&#xff0c;随便创建一个新项目。 点击右上角的SDK Manager 找到SDK…...

“消息驱动、事件驱动、流 ”的消息模型

文章目录背景消息驱动 Message-Driven事件驱动 Event-Driven流 Streaming事件规范标准简介&#xff1a; 本文旨在帮助大家对近期消息领域的高频词“消息驱动&#xff08;Message-Driven&#xff09;&#xff0c;事件驱动&#xff08;Event-Driven&#xff09;和流&#xff08;S…...

量化股票配对交易可以用Python语言实现吗?

量化股票配对交易可以用Python语言实现吗&#xff1f;Python 是一种流行的编程语言&#xff0c;可用于所有类型的领域&#xff0c;包括数据科学。有大量软件包可以帮助您实现目标&#xff0c;许多公司使用 Python 来开发与金融界相关的以数据为中心的应用程序和科学计算。 最重…...

机器学习洞察 | 一文带你“讲透” JAX

在上篇文章中&#xff0c;我们详细分享了 JAX 这一新兴的机器学习模型的发展和优势&#xff0c;本文我们将通过 Amazon SageMaker 示例展示如何部署并使用 JAX。JAX 的工作机制JAX 的完整工作机制可以用下面这幅图详细解释:图片来源&#xff1a;“Intro to JAX” video on YouT…...

OpenFaaS介绍

FaaS 云计算时代出现了大量XaaS形式的概念&#xff0c;从IaaS(Infrastructure as a Service)、PaaS(Platform as a Service)、SaaS(Software as a Service)到容器云引领的CaaS(Containers as a Service)&#xff0c;再到火热的微服务架构&#xff0c;它们都在试着将各种软、硬…...

【算法设计与分析】STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划;各类算法代码汇总

文章目录前言一、STL容器二、递归算法三、分治法四、蛮力法五、回溯法六、分支限界法七、贪心法八、动态规划前言 本篇共为8类算法(STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划)&#xff0c;则各取每类算法中的几例经典示例进行展示。 一、STL容…...

vue初识

第一次接触vue&#xff0c;前端的html,css,jquery,js学习也有段时间了&#xff0c;就照着B站的视频简单看了一些&#xff0c;了解了一些简单的用法&#xff0c;这边做一个记录。 官网 工具&#xff1a;使用VSCode以及Live Server插件&#xff08;能够实时预览&#xff09; 第…...

火山引擎入选《2022 爱分析 · DataOps 厂商全景报告》,旗下 DataLeap 产品能力获认可

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 2 月 9 日&#xff0c;国内领先的数字化市场研究与咨询机构爱分析发布了《2022 爱分析DataOps 厂商全景报告》&#xff08;以下简称报告&#xff09;&#xff0c;报…...

java-spring_bean的生命周期

生命周期&#xff1a;从创建到消亡的完整过程初始化容器 1. 创建对象&#xff08;内存分配 &#xff09; 2. 执行构造方法 3. 执行属性注入&#xff08;set操作&#xff09; 4. 执行bean初始化方法 使用bean 执行业务操作 关闭/销毁容器 1.执行bean销毁方法 bean销毁时机 容…...

微服务相关概念

一、谈谈你对微服务的理解&#xff0c;微服务有哪些优缺点&#xff1f;微服务是由Martin Fowler大师提出的。微服务是一种架构风格&#xff0c;通过将大型的单体应用划分为比较小的服务单元&#xff0c;从而降低整个系统的复杂度。优点&#xff1a;1、服务部署更灵活&#xff1…...

论文解读:(TransA)TransA: An Adaptive Approach for Knowledge Graph Embedding

简介 先前的知识表示方法&#xff1a;TransE、TransH、TransR、TransD、TranSparse等。的损失函数仅单纯的考虑hrh rhr和ttt在某个语义空间的欧氏距离&#xff0c;认为只要欧式距离最小&#xff0c;就认为h和th和th和t的关系为r。显然这种度量指标过于简单&#xff0c;虽然先…...

js将数字转十进制+十六进制(联动el-ui下拉选择框)

十进制与十六进制的整数转化一、十进制转十六进制二、十六进制转十进制三、联动demo一、十进制转十六进制 正则表达式&#xff1a; /^([0-9]||([1-9][0-9]{0,}))$/解析&#xff1a;[0-9]代表个位数&#xff0c;([1-9][0-9]{0,})代表十位及以上 二、十六进制转十进制 正则表达…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件&#xff0c;这个上传文件是整体功能的一部分&#xff0c;文件在上传的过程中…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...