【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测
【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测
思路
考虑拥挤距离指标与PCC皮尔逊相关系数法相结合,对回归或分类数据进行降维,通过SVM支持向量机交叉验证得到平均指标,来判定优化前后模型好坏 。
通过手动设置拥挤权重,如拥挤权重0.3,关联权重0.7,来得到IPCC的各变量的特征值。
一、回归预测模型
clear all
warning('off','all');
%% 皮尔逊相关系数PCC
tic
load data
addpath('PCC')
ContributeRate=0.9;
xtrain =data(:,1:end-1);
ytrain =data(:,end);
opts.Nf =size(xtrain,2); % 选择因素数量
[m,n]=size(xtrain); % m代表行 n代表列
%% 数据归一化
p_train=xtrain;
t_train = ytrain;FS = mypcc(p_train,t_train,opts); % 皮尔逊相关系数法 函数调用
sf_idx = FS.sf;% 绘图 ,特征排序
extra()xpcc=yt(1:mm);%取前MM个数据%%-----------评估准确性
kfold=5; % 交叉验证K值
Fitness1 = Eval_regress(p_train(:, xpcc),t_train,kfold); %回归评估toc;disp('--------------PCC运行结果---------------')
disp(['平均rmse值=' num2str(Fitness1)]);
disp([ '总特征变量数量 = ' num2str(n) ]);
disp([ '筛选的特征变量数量= ' num2str(mm) ]);
disp(['筛选的特征变量编号为: ' num2str(xpcc)]) ;%% IPCC
tic;
%%--------拥挤阶段
%计算特征的拥挤/相关距离
c1 = IPCC(p_train,t_train);%%--------对特征值进行排名
[res,ind]=sort(c1,'descend');
%%--------选择最重要的特征
W1=c1;
plot2indfeat=ind(1:mm1);%%-----------评估准确性
kfold=5; % 交叉验证K值
Fitness2 = Eval_regress(p_train(:, indfeat),t_train,kfold); %回归评估
xipcc=yt1(1:mm1);toc;disp('--------------IPCC运行结果---------------')
disp(['平均rmse值=' num2str(Fitness2)]);
disp([ '总特征变量数量 = ' num2str(n) ]);
disp([ '筛选的特征变量数量= ' num2str(mm1) ]);
disp(['筛选的特征变量编号为: ' num2str(xipcc)]) ;
历时 4.308931 秒。
--------------PCC运行结果---------------
平均rmse值=1.5093
总特征变量数量 = 30
筛选的特征变量数量= 17
筛选的特征变量编号为: 4 17 15 18 24 27 22 23 16 28 30 29 20 21 5 25 19
历时 4.006288 秒。
--------------IPCC运行结果---------------
平均rmse值=1.4565
总特征变量数量 = 30
筛选的特征变量数量= 24
筛选的特征变量编号为: 4 17 15 18 24 27 23 16 22 29 21 5 28 19 30 6 14 9 10 20 8 7 26 12
可见IPCC方法得到的特征变量的权重更加均匀, 所对应达到累计90%贡献率的变量更多 ,平均rmse结果更优。
二、分类预测模型
classdata=xlsread(‘数据集.xlsx’);
ContributeRate=0.9;
xtrain =classdata(:,1:end-1);
ytrain =classdata(:,end);
历时 13.706817 秒。
--------------PCC运行结果---------------
平均正确率acc=72.8169%
总特征变量数量 = 12
筛选的特征变量数量= 8
筛选的特征变量编号为: 5 8 9 3 6 7 12 11
历时 1.660615 秒。
--------------IPCC运行结果---------------
平均正确率acc=74.241%
总特征变量数量 = 12
筛选的特征变量数量= 8
筛选的特征变量编号为: 5 6 8 9 3 11 7 12
通过分类案例数据可得, IPCC特征选择方式更优,准确率较高。
三、代码获取
后台私信回复“63期”其可获取下载方式。
相关文章:

【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测
【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测 思路 考虑拥挤距离指标与PCC皮尔逊相关系数法相结合,对回归或分类数据进行降维,通过SVM支持向量机交叉验证得到平均指标,来…...

AI 绘画Stable Diffusion 研究(二)sd模型ControlNet1.1 介绍与安装
部署包作者:秋葉aaaki 免责声明: 本安装包及启动器免费提供 无任何盈利目的 大家好,我是风雨无阻。 众所周知,StableDiffusion 是非常强大的AI绘图工具,需要详细了解StableDiffusion的朋友,可查看我之前的这篇文章: …...
接口参数设计原则
1. 不能太动态. 不相信客户端的原则 例如传递 filterFields , 推送一个表的某些字段给上游. 2. 可以服务端提供一些封装. 这个封装可以是写死的组合, 也可以是后端配置的. 最好的是 代码里的领域类bean 1,1对应一个名称. 可以是 classReference. 运营态有很多字段是给用户看的…...
网络安全防护利器:SK5代理与IP代理的技术对比
一、IP代理与SK5代理技术简介 IP代理: IP代理是一种通过中间服务器转发网络请求的技术。用户通过向代理服务器发出请求,代理服务器转发请求至目标服务器,然后将目标服务器的响应返回给用户。主要功能包括隐藏真实IP地址、绕过地理限制和IP封锁…...

IDEA删除本地git仓库、创建本地git仓库、关联其他仓库并上传
IDEA删除本地git仓库、创建本地git仓库、关联其他仓库并上传 删除本地Git仓库 创建本地Git仓库 关联其他仓库并上传 要在IntelliJ IDEA中删除本地Git仓库并创建新的本地Git仓库,以及关联其他仓库并上传,请按照以下步骤进行操作: 删除本地G…...

JavaEE简单示例——在使用Tomcat的时候可能出现的一些报错
简单介绍: 在我们之前使用Tomcat的时候,经常会出现在启动的时候因为一些报错导致项目无法正常的启动,我们就对一些比较常见的报错来看一下可能导致的原因,以及出现报错之后如何去解决。 严重: Failed to initialize end point a…...
webrtc的线程模型
目录 线程的声明 线程创建过程 向线程中投递消息 从消息队列中取消息的具体实现 处理线程消息 webrtc线程模块的实现逻辑在 rtc_base\thread.h 文件中 比如想创建一个线程: //声明要创建的线程指针,通过智能指针管理 std::unique_ptr<rtc::Thr…...
数据库备份还原-mysqldump、mydumper、xtrabackup、压缩
目录 数据库备份,数据库为school,素材如下 一、创建student和score表 二、为student表和score表增加记录 三、练习题 数据库备份,数据库为school,素材如下 一、创建student和score表 CREATE TABLE student ( id INT(10) NOT…...

【黑马程序员前端】JavaScript入门到精通--20230801
B站链接 理论 HTML相关知识【黑马程序员前端】 https://blog.csdn.net/m0_48964052/article/details/125951658 CSS相关知识【黑马程序员前端】 https://blog.csdn.net/m0_48964052/article/details/125951788 黑马程序员——JavaScript基础1(初识 JavaS…...
100道Java多线程面试题(上)
线程创建方式? 线程有哪些基本状态? 如何停止一个正在运行的线程? 有三个线程T1,T2,T3,如何保证顺序执行? 在线程中你怎么处理不可控制异常? 如何创建线程池? 以下情况如何使用线程池?高并发、任务时间短;…...

web开发中的安全和防御入门——csp (content-security-policy内容安全策略)
偶然碰到iframe跨域加载被拒绝的问题,原因是父页面默认不允许加载跨域的子页面,也就是的content-security-policy中没有设置允许跨域加载。 简单地说,content-security-policy能限制页面允许和不允许加载的所有资源,常见的包括&a…...

定了!全国2023下半年软考(高级、中级、初级)报名时间汇总
截止到2023年8月2日,有以下地区公布了软考报名时间: 安徽软考2023下半年报名时间:8月15日9:00至8月21日16:00 黑龙江软考2023下半年报名时间:8月16日至8月22日 甘肃软考2023下半年报名时间:8月28日9:00至9月6日18:00…...

Linux下安装配置Redis
文章目录 安装依赖库上传安装包并解压 启动默认启动指定配置启动开机自启 安装 依赖库 Redis是基于C语言编写的,因此首先需要安装Redis所需要的gcc依赖: yum install -y gcc tcl上传安装包并解压 将Redis安装包上传到服务器的任意目录,例…...

深度学习(33)——CycleGAN(2)
深度学习(33)——CycleGAN(2) 完整项目在在这里:欢迎造访 文章目录 深度学习(33)——CycleGAN(2)1. Generator2. Discriminator3. fake pool4. loss定义5. 模型参数量6…...
WeakMap and WeakSet(弱映射和弱集合)
在垃圾回收中了解JavaScript 引擎在值“可达”和可能被使用时会将其保持在内存中 let john { name: "John" }; // 该对象能被访问,john 是它的引用 // 覆盖引用 john null; // 该对象将会被从内存中清除通常,当对象、数组之类的数据结构在内…...

【Vue3基础】组件保持存活、异步加载组件
一、组件保持存活 1、需求描述 点击按钮跳转到其他组件后,原组件不会被销毁 2、知识整理 1)组件生命周期 创建期:beforeCreate、created 挂载期:beforeMount、mounted 更新期:beforeUpdate、updated 销毁期&am…...

在 3ds Max 中使用相机映射将静止图像转换为实时素材
推荐: NSDT场景编辑器 助你快速搭建可二次开发的3D应用场景 1. 在 Photoshop 中准备图像 步骤 1 这是我将在教程中使用的静止图像。 这是我的静态相机纸箱的快照。 静止图像 步骤 2 打开 Photoshop。将图像导入 Photoshop。 打开 Photoshop 步骤 3 单击套索工…...
如何使用GIL解决Python多线程性能瓶颈
如何使用GIL解决Python多线程性能瓶颈 引言: Python是一种使用广泛的编程语言,但其在多线程方面存在一个性能瓶颈,即全局解释器锁(Global Interpreter Lock,简称GIL)。GIL会限制Python的多线程并行能力&am…...

k8s概念-深入pod
回到目录 工作负载(workloads) 工作负载(workload)是在kubernetes集群中运行的应用程序。无论你的工作负载是单一服务还是多个一同工作的服务构成,在kubernetes中都可以使用pod来运行它 workloads分为pod与control…...
Web服务器实验案例
目录 关闭或放行防火墙和selinux 1 搭建静态网站 2 建立两个基于ip地址访问的网站 思路: 简单配置 编写httpd额外文件 3 建立两个基于不同端口访问的网站 思路 创建文件(与之前一致) 额外文件配置 4 基于虚拟目录和用户控制的web网…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...

Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...