当前位置: 首页 > news >正文

【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测

【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测

思路

考虑拥挤距离指标与PCC皮尔逊相关系数法相结合,对回归或分类数据进行降维,通过SVM支持向量机交叉验证得到平均指标,来判定优化前后模型好坏 。
通过手动设置拥挤权重,如拥挤权重0.3,关联权重0.7,来得到IPCC的各变量的特征值。

一、回归预测模型

clear all
warning('off','all');
%% 皮尔逊相关系数PCC
tic
load data
addpath('PCC')
ContributeRate=0.9;
xtrain =data(:,1:end-1);
ytrain =data(:,end);
opts.Nf =size(xtrain,2);    % 选择因素数量
[m,n]=size(xtrain); % m代表行  n代表列 
%%  数据归一化
p_train=xtrain;
t_train = ytrain;FS     = mypcc(p_train,t_train,opts); % 皮尔逊相关系数法 函数调用
sf_idx = FS.sf;% 绘图  ,特征排序
extra()xpcc=yt(1:mm);%取前MM个数据%%-----------评估准确性
kfold=5;           %  交叉验证K值
Fitness1 = Eval_regress(p_train(:, xpcc),t_train,kfold);   %回归评估toc;disp('--------------PCC运行结果---------------')
disp(['平均rmse值=' num2str(Fitness1)]);
disp([ '总特征变量数量 = ' num2str(n)    ]);
disp([ '筛选的特征变量数量= ' num2str(mm)    ]);
disp(['筛选的特征变量编号为: '  num2str(xpcc)]) ;%% IPCC
tic;
%%--------拥挤阶段
%计算特征的拥挤/相关距离
c1 = IPCC(p_train,t_train);%%--------对特征值进行排名
[res,ind]=sort(c1,'descend');
%%--------选择最重要的特征
W1=c1;
plot2indfeat=ind(1:mm1);%%-----------评估准确性
kfold=5;           %  交叉验证K值
Fitness2 = Eval_regress(p_train(:, indfeat),t_train,kfold);   %回归评估
xipcc=yt1(1:mm1);toc;disp('--------------IPCC运行结果---------------')
disp(['平均rmse值=' num2str(Fitness2)]);
disp([ '总特征变量数量 = ' num2str(n)    ]);
disp([ '筛选的特征变量数量= ' num2str(mm1)    ]);
disp(['筛选的特征变量编号为: '  num2str(xipcc)]) ;

历时 4.308931 秒。
--------------PCC运行结果---------------
平均rmse值=1.5093
总特征变量数量 = 30
筛选的特征变量数量= 17
筛选的特征变量编号为: 4 17 15 18 24 27 22 23 16 28 30 29 20 21 5 25 19

在这里插入图片描述
在这里插入图片描述

历时 4.006288 秒。
--------------IPCC运行结果---------------
平均rmse值=1.4565
总特征变量数量 = 30
筛选的特征变量数量= 24
筛选的特征变量编号为: 4 17 15 18 24 27 23 16 22 29 21 5 28 19 30 6 14 9 10 20 8 7 26 12

在这里插入图片描述
在这里插入图片描述
可见IPCC方法得到的特征变量的权重更加均匀, 所对应达到累计90%贡献率的变量更多 ,平均rmse结果更优。

二、分类预测模型

在这里插入图片描述

classdata=xlsread(‘数据集.xlsx’);
ContributeRate=0.9;
xtrain =classdata(:,1:end-1);
ytrain =classdata(:,end);

历时 13.706817 秒。
--------------PCC运行结果---------------
平均正确率acc=72.8169%
总特征变量数量 = 12
筛选的特征变量数量= 8
筛选的特征变量编号为: 5   8   9   3   6   7  12  11

在这里插入图片描述
在这里插入图片描述

历时 1.660615 秒。
--------------IPCC运行结果---------------
平均正确率acc=74.241%
总特征变量数量 = 12
筛选的特征变量数量= 8
筛选的特征变量编号为: 5   6   8   9   3  11   7  12

在这里插入图片描述
在这里插入图片描述
通过分类案例数据可得, IPCC特征选择方式更优,准确率较高。

三、代码获取

后台私信回复“63期”其可获取下载方式。

相关文章:

【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测

【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测 思路 考虑拥挤距离指标与PCC皮尔逊相关系数法相结合,对回归或分类数据进行降维,通过SVM支持向量机交叉验证得到平均指标,来…...

AI 绘画Stable Diffusion 研究(二)sd模型ControlNet1.1 介绍与安装

部署包作者:秋葉aaaki 免责声明: 本安装包及启动器免费提供 无任何盈利目的 大家好,我是风雨无阻。 众所周知,StableDiffusion 是非常强大的AI绘图工具,需要详细了解StableDiffusion的朋友,可查看我之前的这篇文章: …...

接口参数设计原则

1. 不能太动态. 不相信客户端的原则 例如传递 filterFields , 推送一个表的某些字段给上游. 2. 可以服务端提供一些封装. 这个封装可以是写死的组合, 也可以是后端配置的. 最好的是 代码里的领域类bean 1,1对应一个名称. 可以是 classReference. 运营态有很多字段是给用户看的…...

网络安全防护利器:SK5代理与IP代理的技术对比

一、IP代理与SK5代理技术简介 IP代理: IP代理是一种通过中间服务器转发网络请求的技术。用户通过向代理服务器发出请求,代理服务器转发请求至目标服务器,然后将目标服务器的响应返回给用户。主要功能包括隐藏真实IP地址、绕过地理限制和IP封锁…...

IDEA删除本地git仓库、创建本地git仓库、关联其他仓库并上传

IDEA删除本地git仓库、创建本地git仓库、关联其他仓库并上传 删除本地Git仓库 创建本地Git仓库 关联其他仓库并上传 要在IntelliJ IDEA中删除本地Git仓库并创建新的本地Git仓库,以及关联其他仓库并上传,请按照以下步骤进行操作: 删除本地G…...

JavaEE简单示例——在使用Tomcat的时候可能出现的一些报错

简单介绍: 在我们之前使用Tomcat的时候,经常会出现在启动的时候因为一些报错导致项目无法正常的启动,我们就对一些比较常见的报错来看一下可能导致的原因,以及出现报错之后如何去解决。 严重: Failed to initialize end point a…...

webrtc的线程模型

目录 线程的声明 线程创建过程 向线程中投递消息 从消息队列中取消息的具体实现 处理线程消息 webrtc线程模块的实现逻辑在 rtc_base\thread.h 文件中 比如想创建一个线程&#xff1a; //声明要创建的线程指针&#xff0c;通过智能指针管理 std::unique_ptr<rtc::Thr…...

数据库备份还原-mysqldump、mydumper、xtrabackup、压缩

目录 数据库备份&#xff0c;数据库为school&#xff0c;素材如下 一、创建student和score表 二、为student表和score表增加记录 三、练习题 数据库备份&#xff0c;数据库为school&#xff0c;素材如下 一、创建student和score表 CREATE TABLE student ( id INT(10) NOT…...

【黑马程序员前端】JavaScript入门到精通--20230801

B站链接 理论 HTML相关知识【黑马程序员前端】 https://blog.csdn.net/m0_48964052/article/details/125951658 CSS相关知识【黑马程序员前端】 https://blog.csdn.net/m0_48964052/article/details/125951788 黑马程序员——JavaScript基础1&#xff08;初识 JavaS…...

100道Java多线程面试题(上)

线程创建方式&#xff1f; 线程有哪些基本状态? 如何停止一个正在运行的线程&#xff1f; 有三个线程T1,T2,T3,如何保证顺序执行&#xff1f; 在线程中你怎么处理不可控制异常&#xff1f; 如何创建线程池&#xff1f; 以下情况如何使用线程池&#xff1f;高并发、任务时间短;…...

web开发中的安全和防御入门——csp (content-security-policy内容安全策略)

偶然碰到iframe跨域加载被拒绝的问题&#xff0c;原因是父页面默认不允许加载跨域的子页面&#xff0c;也就是的content-security-policy中没有设置允许跨域加载。 简单地说&#xff0c;content-security-policy能限制页面允许和不允许加载的所有资源&#xff0c;常见的包括&a…...

定了!全国2023下半年软考(高级、中级、初级)报名时间汇总

截止到2023年8月2日&#xff0c;有以下地区公布了软考报名时间&#xff1a; 安徽软考2023下半年报名时间&#xff1a;8月15日9:00至8月21日16:00 黑龙江软考2023下半年报名时间&#xff1a;8月16日至8月22日 甘肃软考2023下半年报名时间&#xff1a;8月28日9:00至9月6日18:00…...

Linux下安装配置Redis

文章目录 安装依赖库上传安装包并解压 启动默认启动指定配置启动开机自启 安装 依赖库 Redis是基于C语言编写的&#xff0c;因此首先需要安装Redis所需要的gcc依赖&#xff1a; yum install -y gcc tcl上传安装包并解压 将Redis安装包上传到服务器的任意目录&#xff0c;例…...

深度学习(33)——CycleGAN(2)

深度学习&#xff08;33&#xff09;——CycleGAN&#xff08;2&#xff09; 完整项目在在这里&#xff1a;欢迎造访 文章目录 深度学习&#xff08;33&#xff09;——CycleGAN&#xff08;2&#xff09;1. Generator2. Discriminator3. fake pool4. loss定义5. 模型参数量6…...

WeakMap and WeakSet(弱映射和弱集合)

在垃圾回收中了解JavaScript 引擎在值“可达”和可能被使用时会将其保持在内存中 let john { name: "John" }; // 该对象能被访问&#xff0c;john 是它的引用 // 覆盖引用 john null; // 该对象将会被从内存中清除通常&#xff0c;当对象、数组之类的数据结构在内…...

【Vue3基础】组件保持存活、异步加载组件

一、组件保持存活 1、需求描述 点击按钮跳转到其他组件后&#xff0c;原组件不会被销毁 2、知识整理 1&#xff09;组件生命周期 创建期&#xff1a;beforeCreate、created 挂载期&#xff1a;beforeMount、mounted 更新期&#xff1a;beforeUpdate、updated 销毁期&am…...

在 3ds Max 中使用相机映射将静止图像转换为实时素材

推荐&#xff1a; NSDT场景编辑器 助你快速搭建可二次开发的3D应用场景 1. 在 Photoshop 中准备图像 步骤 1 这是我将在教程中使用的静止图像。 这是我的静态相机纸箱的快照。 静止图像 步骤 2 打开 Photoshop。将图像导入 Photoshop。 打开 Photoshop 步骤 3 单击套索工…...

如何使用GIL解决Python多线程性能瓶颈

如何使用GIL解决Python多线程性能瓶颈 引言&#xff1a; Python是一种使用广泛的编程语言&#xff0c;但其在多线程方面存在一个性能瓶颈&#xff0c;即全局解释器锁&#xff08;Global Interpreter Lock&#xff0c;简称GIL&#xff09;。GIL会限制Python的多线程并行能力&am…...

k8s概念-深入pod

回到目录 工作负载&#xff08;workloads&#xff09; 工作负载&#xff08;workload&#xff09;是在kubernetes集群中运行的应用程序。无论你的工作负载是单一服务还是多个一同工作的服务构成&#xff0c;在kubernetes中都可以使用pod来运行它 workloads分为pod与control…...

Web服务器实验案例

目录 关闭或放行防火墙和selinux 1 搭建静态网站 2 建立两个基于ip地址访问的网站 思路&#xff1a; 简单配置 编写httpd额外文件 3 建立两个基于不同端口访问的网站 思路 创建文件&#xff08;与之前一致&#xff09; 额外文件配置 4 基于虚拟目录和用户控制的web网…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...