Python爬虫教程篇+图形化整理数据(数学建模可用)
一、首先我们先看要求
1.写一个爬虫程序
2、爬取目标网站数据,关键项不能少于5项。
3、存储数据到数据库,可以进行增删改查操作。
4、扩展:将库中数据进行可视化展示。
二、操作步骤:
首先我们根据要求找到一个适合自己的网站,我找的网站如下所示:
电影 / 精品电影_电影天堂-迅雷电影下载 (dygod.net)

1、根据要求我们导入爬取网页所需要的板块:
import requests #扒取页面
import re #正则
import xlwt #Excel库用于读取和写入
from bs4 import BeautifulSoup #从网页提取信息
2、设置url为我们所需要爬的网站,并为其增加ua报头
url = "https://www.dygod.net/html/gndy/dyzz/"
# url1 = "https://movie.douban.com/top250?start=0&filter="hd = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36 Edg/115.0.1901.188'
}
3.我们记录爬取的电影,以及创建自己的工作表
count = 0 #记录爬取的电影数量
total = []
workbook = xlwt.Workbook(encoding="utf-8") #创建workbook对象
worksheet = workbook.add_sheet('sheet1') #创建工作表
4.我们基于网站上的数据通过F12进入调试模式,找寻自己需要爬取的数据,进行封装和继承,最终保存在movie.xls表格中导进去
def saveExcel(worksheet, count, lst):for i, value in enumerate(lst):worksheet.write(count, i, value)for i in range(2, 10): # 爬取电影的页面数量,范围从第2页到第10页(包含第10页)url = "https://www.dygod.net/html/gndy/dyzz/index_"+str(i)+".html"# print(url)res = requests.get(url,headers=hd)res.encoding = res.apparent_encoding# print(res.text)soup = BeautifulSoup(res.text,"html.parser")# print(soup.title,type(soup.title))ret = soup.find_all(class_="tbspan",style="margin-top:6px") #找到所有电影的表格for x in ret: #遍历每一个电影表格info = []print(x.find("a").string) #电影名称info.append(x.find("a").string)pat = re.compile(r"◎译 名(.*)\n")ret_translated_name = re.findall(pat, str(x))for n in ret_translated_name:n = n.replace(u'/u3000', u'')print("◎译 名:", n)info.append(str(n).split("/")[0])pat = re.compile(r"◎年 代(.*)\n")ret_year = re.findall(pat, str(x))for n in ret_year:n = n.replace(u'/u3000', u'')print("◎年 代:", n)info.append(str(n))pat = re.compile(r"◎产 地(.*)\n")ret_production_country = re.findall(pat, str(x))for n in ret_production_country:n = n.replace(u'/u3000', u'')print("◎产 地:", n)info.append(str(n))pat = re.compile(r"◎类 别(.*)\n")ret_production_country = re.findall(pat, str(x))for n in ret_production_country:n = n.replace(u'/u3000', u'')print("◎类 别:", n)info.append(str(n))pat = re.compile(r"◎语 言(.*)\n")ret_production_country = re.findall(pat, str(x))for n in ret_production_country:n = n.replace(u'/u3000', u'')print("◎语 言:", n)info.append(str(n))pat = re.compile(r"◎字 幕(.*)\n")ret_production_country = re.findall(pat, str(x))for n in ret_production_country:n = n.replace(u'/u3000', u'')print("◎字 幕:", n)info.append(str(n))#print(count,info)saveExcel(worksheet,count,info)count += 1print("="*100)
workbook.save("movie.xls")
print(count)
5.如此就做到了爬取我们所需要的数据是不是很简单,最后的汇总源码如下:
# -*- coding:utf-8 -*-
'''
@Author: lingchenwudiandexing
@contact: 3131579667@qq.com
@Time: 2023/8/2 10:24
@version: 1.0
'''
from urllib import responseimport requests #扒取页面
import re #正则
import xlwt #Excel库用于读取和写入
from bs4 import BeautifulSoup #从网页提取信息url = "https://www.dygod.net/html/gndy/dyzz/"
# url1 = "https://movie.douban.com/top250?start=0&filter="hd = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36 Edg/115.0.1901.188'
}#正式代码开始
count = 0 #记录爬取的电影数量
total = []
workbook = xlwt.Workbook(encoding="utf-8") #创建workbook对象
worksheet = workbook.add_sheet('sheet1') #创建工作表def saveExcel(worksheet, count, lst):for i, value in enumerate(lst):worksheet.write(count, i, value)for i in range(2, 10): # 爬取电影的页面数量,范围从第2页到第10页(包含第10页)url = "https://www.dygod.net/html/gndy/dyzz/index_"+str(i)+".html"# print(url)res = requests.get(url,headers=hd)res.encoding = res.apparent_encoding# print(res.text)soup = BeautifulSoup(res.text,"html.parser")# print(soup.title,type(soup.title))ret = soup.find_all(class_="tbspan",style="margin-top:6px") #找到所有电影的表格for x in ret: #遍历每一个电影表格info = []print(x.find("a").string) #电影名称info.append(x.find("a").string)pat = re.compile(r"◎译 名(.*)\n")ret_translated_name = re.findall(pat, str(x))for n in ret_translated_name:n = n.replace(u'/u3000', u'')print("◎译 名:", n)info.append(str(n).split("/")[0])pat = re.compile(r"◎年 代(.*)\n")ret_year = re.findall(pat, str(x))for n in ret_year:n = n.replace(u'/u3000', u'')print("◎年 代:", n)info.append(str(n))pat = re.compile(r"◎产 地(.*)\n")ret_production_country = re.findall(pat, str(x))for n in ret_production_country:n = n.replace(u'/u3000', u'')print("◎产 地:", n)info.append(str(n))pat = re.compile(r"◎类 别(.*)\n")ret_production_country = re.findall(pat, str(x))for n in ret_production_country:n = n.replace(u'/u3000', u'')print("◎类 别:", n)info.append(str(n))pat = re.compile(r"◎语 言(.*)\n")ret_production_country = re.findall(pat, str(x))for n in ret_production_country:n = n.replace(u'/u3000', u'')print("◎语 言:", n)info.append(str(n))pat = re.compile(r"◎字 幕(.*)\n")ret_production_country = re.findall(pat, str(x))for n in ret_production_country:n = n.replace(u'/u3000', u'')print("◎字 幕:", n)info.append(str(n))#print(count,info)saveExcel(worksheet,count,info)count += 1print("="*100)
workbook.save("movie.xls")
print(count)
三、基础部分实现结果截屏


四、实验Plus升级版,增加数据汇总为图形化界面,面向对象
1.导入图像化界面的板块
import matplotlib.pyplot as plt
import numpy as np
from bs4 import BeautifulSoup
2.实现自己想要实现的图形:(其中几行几列标注清楚)
①:初步:创建自己的画布,以及想要实现展现的语言
# 将数据保存到Pandas DataFrame对象中
columns = ["电影名称", "译名", "年代", "产地", "类别", "语言","字幕"]
df = pd.DataFrame(data, columns=columns)# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']# 创建一个包含4个子图的画布
figure = plt.figure(figsize=(12, 8))
②:创建线形图:
# 创建线性图
subplot_line = figure.add_subplot(2, 2, 1)
x_data = np.arange(0, 100)
y_data = np.arange(1, 101)
subplot_line.plot(x_data, y_data)
subplot_line.set_title('线性图')
③:创建饼状图:
subplot_pie = figure.add_subplot(2, 2, 3)
subplot_pie.pie(genre_counts.values, labels=genre_counts.index, autopct='%1.1f%%')
subplot_pie.set_title('饼状图')
④:创建散点图:(设置好断点,不然会出现字符重叠的情况)
# 创建散点图
subplot_scatter = figure.add_subplot(2, 2, 4)
x_scatter = np.random.rand(50)
y_scatter = np.random.rand(50)
subplot_scatter.scatter(x_scatter, y_scatter)
subplot_scatter.set_title('散点图')
import warnings
warnings.filterwarnings("ignore")
plt.tight_layout()
plt.show()
⑤:到此我们整个爬虫以及数据记录便结束了,附上Plus实现截图:


相关文章:
Python爬虫教程篇+图形化整理数据(数学建模可用)
一、首先我们先看要求 1.写一个爬虫程序 2、爬取目标网站数据,关键项不能少于5项。 3、存储数据到数据库,可以进行增删改查操作。 4、扩展:将库中数据进行可视化展示。 二、操作步骤: 首先我们根据要求找到一个适合自己的网…...
数字安全观察·数据安全分析方向
政策形势方面,全球均在加快制定并完善数字经济与数据安全相关政策法规。国际方面,欧盟、美国、英国、印度、俄罗斯等国家持续完善数据安全方面的法律政策,并且尤其关注数据跨境传输方面的问题。同时世界各国都着力关注人工智能数据安全风险&a…...
Kubernetes系列-配置存储 ConfigMap Secret
1 ConfigMap介绍 1.1 概述 在部署应用程序时,我们都会涉及到应用的配置,在容器中,如Docker容器中,如果将配置文件打入容器镜像,这种行为等同于写死配置,每次修改完配置,镜像就得重新构建。当然…...
bacnet ddc控制器如何通过485口转发Modbus协议控制modbus执行设备
要将BACnet DDC控制器通过485口转发Modbus协议控制Modbus执行设备,可以按照以下步骤进行: 确定Modbus执行设备的通信参数:包括串口波特率、数据位、停止位和校验位等参数。确保BACnet DDC控制器的485口通信设置与Modbus执行设备一致。 在BAC…...
构建易于运维的 AI 训练平台:存储选型与最佳实践
伴随着公司业务的发展,数据量持续增长,存储平台面临新的挑战:大图片的高吞吐、超分辨率场景下数千万小文件的 IOPS 问题、运维复杂等问题。除了这些技术难题,我们基础团队的人员也比较紧张,负责存储层运维的仅有 1 名同…...
前期自学Java的基础部分总结(二)
一. 抽象类 1.1 抽象类的概述 在java中,一个没有方法体的方法应该定义为抽象方法,而类中如果有抽象方法,该类必须被定义为抽象类 1.2 抽象类的特点 抽象类和抽象方法必须使用abstract关键字修饰 publice abstract class 类名{};public…...
Altova MissionKit 2023Crack
Altova MissionKit 2023Crack MissionKit是一套面向信息架构师和应用程序开发人员的企业级XML、JSON、SQL和UML工具的软件开发套件。MissionKit包括Altova XMLSpy、MapForce、StyleVision和其他市场领先的产品,用于构建当今的真实世界软件解决方案。 使用MissionKit…...
Linux CentOS上快速安装Docker并运行服务
在 CentOS 上快速安装 Docker,可以按照以下步骤进行: 1. 更新系统: sudo yum update 2. 安装 Docker: sudo yum install docker 3. 启动 Docker 服务: sudo systemctl start docker 4. 设置 Docker 开机自启动&…...
TCP三次握手与四次断开
TCP三次握手机制 三次握手是指建立一个TCP连接时,需要客户端和服务器总共发送3个包。进行三次握手的主要作用就是为了确认双方的接收能力和发送能力是否正常、指定自己的初始化序列号为后面的可靠性传送做准备。 1、客户端发送建立TCP连接的请求报文,其…...
关于前端与APP录音相关的笔记
文章目录 一、前言二、内容组成1、权限获取2、针对设备兼容3、内容类型转换4、传输存储 三、拓展内容自动播放部分 一、前言 主要针对前端适配录音能力的简要记录,针对默认的wav及其可能需要转换到特定的mp3之类格式以适配需求的问题。(这类通常是兼容tt…...
【Java】SpringBoot项目整合FreeMarker加快页面访问速度
文章目录 什么是FreeMarker?它的优点有那些?使用方式 什么是FreeMarker? Freemarker是一个模板引擎技术,它可以将数据和模板结合起来生成最终的输出。它是一种用于生成文本输出(如HTML、XML、JSON等)的通用…...
conda环境下安装opencv-python包
conda环境下安装opencv-python包 一、#查看环境 conda info --env# conda environments: # base D:\ProgramData\Anaconda3二、激活base环境 进入conda环境 conda init cmd.exe conda activate base三、根据版本号,下载对应的 python-opencv…...
JVM面试题--类加载器
什么是类加载器,类加载器有哪些 类加载子系统,当java源代码编译为class文件之后,由他将字节码装载到运行时数据区 BootStrap ClassLoader 启动类加载器或者叫做引导类加载器,是用c实现的,嵌套在jvm内部,…...
js怎么计算当前一周的日期
你可以使用 JavaScript 的 Date 对象来计算当前一周的日期。首先,你需要获取当前日期,然后使用 Date 对象的 getDay 方法获取当前是星期几(星期日是 0,星期一是 1,以此类推)。然后,你可以根据当前是星期几来计算出本周…...
【图论】差分约束
一.情景导入 x1-x0<9 ; x2-x0<14 ; x3-x0<15 ; x2-x1<10 ; x3-x2<9; 求x3-x0的最大值; 二.数学解法 联立式子2和5,可得x3-x0<23;但式子3可得x3-x0<15。所以最大值为15; 三.图论 但式子多了我们就不好解了࿰…...
13 springboot项目——准备数据和dao类
13.1 静态资源下载 https://download.csdn.net/download/no996yes885/88151513 13.2 静态资源位置 css样式文件放在static的css目录下;static的img下放图片;template目录下放其余的html文件。 13.3 创建两个实体类 导入依赖:lombok <!…...
Java 基础进阶总结(一)反射机制学习总结
文章目录 一、初识反射机制1.1 反射机制概述1.2 反射机制概念1.3 Java反射机制提供的功能1.4 反射机制的优点和缺点 二、反射机制相关的 API 一、初识反射机制 1.1 反射机制概述 JAVA 语言是一门静态语言,对象的各种信息在程序运行时便已经确认下来了,内…...
ERROR: transport error 202: gethostbyname: unknown host报错解决方案
Java 9 syntax for remote debugger: -agentlib:jdwptransportdt_socket,servery,suspendn,address*:5005Java 8 不适用 *:port,应该使用: -agentlib:jdwptransportdt_socket,servery,suspendn,address5005参考 https://stackoverflow.com/questions/50344957/ja…...
PyTorch高级教程:自定义模型、数据加载及设备间数据移动
在深入理解了PyTorch的核心组件之后,我们将进一步学习一些高级主题,包括如何自定义模型、加载自定义数据集,以及如何在设备(例如CPU和GPU)之间移动数据。 一、自定义模型 虽然PyTorch提供了许多预构建的模型层&#…...
JavaEE——SpringMVC中的常用注解
目录 1、RestController (1)、Controller (2)、ResponseBody 2、RequestMappping (1)、定义 (2)、使用 【1】、修饰方法 【2】、修饰类 【3】、指定方法类型 【4】、简化版…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
