当前位置: 首页 > news >正文

计算机毕设 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 Yolov5算法
  • 4 数据处理和训练
  • 5 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 **深度学习卫星遥感图像检测与识别 **

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

在这里插入图片描述

1 课题背景

近年来,世界各国大力发展航空航天事业,卫星图像的目标检测在各行各业的应用得到了快速的发展,特别是军事侦查、海洋船舶和渔业管理等领域。由于卫星图像中有价值的信息极少,卫星图像数据规模巨大,这迫切需要智能辅助工具帮助相关从业人员从卫星图像中高效获取精确直观的信息。
本文利用深度学习技术,基于Yolov5算法框架实现卫星图像目标检测问题。

2 实现效果

实现效果如下:可以看出对船只、飞机等识别效果还是很好的。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Yolov5算法

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
相关代码

class Yolo(object):def __init__(self, weights_file, verbose=True):self.verbose = verbose# detection paramsself.S = 7  # cell sizeself.B = 2  # boxes_per_cellself.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle","bus", "car", "cat", "chair", "cow", "diningtable","dog", "horse", "motorbike", "person", "pottedplant","sheep", "sofa", "train","tvmonitor"]self.C = len(self.classes) # number of classes# offset for box center (top left point of each cell)self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),[self.B, self.S, self.S]), [1, 2, 0])self.y_offset = np.transpose(self.x_offset, [1, 0, 2])self.threshold = 0.2  # confidence scores threholdself.iou_threshold = 0.4#  the maximum number of boxes to be selected by non max suppressionself.max_output_size = 10self.sess = tf.Session()self._build_net()self._build_detector()self._load_weights(weights_file)

4 数据处理和训练

数据集
本项目使用 DOTA 数据集,原数据集中待检测的目标如下
在这里插入图片描述
原数据集中的标签如下
在这里插入图片描述
图像分割和尺寸调整
YOLO 模型的图像输入尺寸是固定的,由于原数据集中的图像尺寸不一,我们将原数据集中的图像按目标分布的位置分割成一个个包含目标的子图,并将每个子图尺寸调整为 1024×1024。分割前后的图像如所示。
分割前
在这里插入图片描述
分割后
在这里插入图片描述
模型训练
在 yolov5/ 目录,运行 train.py 文件开始训练:

python train.py --weight weights/yolov5s.pt --batch 16 --epochs 100 --cache

其中的参数说明:

  • weight:使用的预训练权重,这里示范使用的是 yolov5s 模型的预训练权重
  • batch:mini-batch 的大小,这里使用 16
  • epochs:训练的迭代次数,这里我们训练 100 个 epoch
  • cache:使用数据缓存,加速训练进程

相关代码

#部分代码
def train(hyp, opt, device, tb_writer=None):logger.info(f'Hyperparameters {hyp}')log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve'  # logging directorywdir = log_dir / 'weights'  # weights directoryos.makedirs(wdir, exist_ok=True)last = wdir / 'last.pt'best = wdir / 'best.pt'results_file = str(log_dir / 'results.txt')epochs, batch_size, total_batch_size, weights, rank = \opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank# Save run settingswith open(log_dir / 'hyp.yaml', 'w') as f:yaml.dump(hyp, f, sort_keys=False)with open(log_dir / 'opt.yaml', 'w') as f:yaml.dump(vars(opt), f, sort_keys=False)# Configurecuda = device.type != 'cpu'init_seeds(2 + rank)with open(opt.data) as f:data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dictwith torch_distributed_zero_first(rank):check_dataset(data_dict)  # checktrain_path = data_dict['train']test_path = data_dict['val']nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, namesassert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check# Modelpretrained = weights.endswith('.pt')if pretrained:with torch_distributed_zero_first(rank):attempt_download(weights)  # download if not found locallyckpt = torch.load(weights, map_location=device)  # load checkpointif 'anchors' in hyp and hyp['anchors']:ckpt['model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchormodel = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)  # createexclude = ['anchor'] if opt.cfg else []  # exclude keysstate_dict = ckpt['model'].float().state_dict()  # to FP32state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersectmodel.load_state_dict(state_dict, strict=False)  # loadlogger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # reportelse:model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create# Freezefreeze = ['', ]  # parameter names to freeze (full or partial)if any(freeze):for k, v in model.named_parameters():if any(x in k for x in freeze):print('freezing %s' % k)v.requires_grad = False# Optimizernbs = 64  # nominal batch sizeaccumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizinghyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decaypg0, pg1, pg2 = [], [], []  # optimizer parameter groupsfor k, v in model.named_parameters():v.requires_grad = Trueif '.bias' in k:pg2.append(v)  # biaseselif '.weight' in k and '.bn' not in k:pg1.append(v)  # apply weight decayelse:pg0.append(v)  # all else

训练开始时的日志信息
在这里插入图片描述
在这里插入图片描述

5 最后

相关文章:

计算机毕设 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长…...

devops(前端)

1.前言 前端的打包流程和后端的流程是一样的,只是打包的环境和制作的镜像有所不同,前端需要使用nodejs环境打包,镜像也是使用nginx镜像,因为用的是k8s的pod运行镜像,还需要使用configmap挂载nginx的配置,一…...

SpringBoot中MongoDB的使用

SpringBoot中MongoDB的使用 MongoDB 是最早热门非关系数据库的之一,使用也比较普遍,一般会用做离线数据分析来使用,放到内网的居 多。由于很多公司使用了云服务,服务器默认都开放了外网地址,导致前一阵子大批 MongoD…...

Spring学习之GOF的工厂模式

文章目录 工厂模式的三种形态简单工厂模式工厂方法模式抽象工厂模式(了解) 设计模式:一种可以杯冲覅利用的解决方案GoF(Gang of Four),中文名——四人组《Design Patterns: Elements of Reusable Object-Or…...

整数转字符串

描述 用递归法将一个整数 n 转换成字符串。例如,输人 483,应输出字符串"483”。 n的位数不确定,可以是任意位数的整数。 输入 输入一个整数 输出 输出一个字符串 输入样例 1 483 输出样例 1 483 代码一(如下&…...

【ARM Coresight 系列文章 2.4 - Coresight 寄存器:DEVARCH,DEVID, DEVTYPE】

文章目录 1.1 DEVARCH(device architecture register)1.2 DEVID(Device configuration Register)1.3 DEVTYPE(Device Type Identifier Register) 1.1 DEVARCH(device architecture register) DEVARCH 寄存器标识了coresight 组件的架构信息。 bits[31:21] 定义了组件架构&…...

Could not locate supplied template: react+ts搭建

1. reactts创建 我们在是用下create-react-app之前要下载一下 npm install create-react-app -g使用一下命令创建ts的react框架 create-react-app my-app --scripts-versionreact-scripts-ts 2. 遇见问题 我们用以上创建之后会提示一段代码选择“Y”之后发现我们创建的项目…...

fatal error C1128: 节数超过对象文件格式限制: 请使用 /bigobj 进行编译

问题 默认情况下,对象文件最多可存放 65,536 (2^16) 个可寻址的节。 /bigobj将该地址容量增加至 4,294,967,296 (2^32)。大多数模块将从来不会生成包含数超过 65,536 的 .obj 文件。 但是,计算机生成的代码或大量使用模板库的代码可能需要可存放更多节的…...

xml文件转成yolo中的txt文件

xml文件转成yolo中的txt文件 # codingutf-8import os import xml.dom.minidom import cv2 as cvdef xml_to_txt(indir, outdir):os.chdir(indir)xmls os.listdir(.)for i, file in enumerate(xmls):file_save file.split(.)[0] .txtfile_txt os.path.join(outdir, file_sa…...

[Linux]手把手教你制作进度条小程序

[Linux]制作进度条小程序 文章目录 [Linux]制作进度条小程序C语言中的\n和\r字符缓冲区的刷新策略进行进度条代码编写 C语言中的\n和\r字符 C语言中字符分为两种: 可显字符控制字符 其中可显字符就是字符a这类的字符,控制字符就是\n这种控制字符。 对于我们制作…...

centos 重启 nginx 的三种方式

重启nginx的方式都有哪些,ChatGPT给出了比较全面的答案 1.service nginx restart 2.systemctl restart nginx 3.cd /usr/local/nginx/sbin 停止:./nginx -s stop 启动: ./nginx 重新加载配置: ./nginx -s reload 注意:cd /usr/local/nginx/s…...

跨境新手必看,海外推广的7个方式

如何根据自己的产品定位选择合适的平台推广,是作为跨境卖家都需要深入探讨的问题,由于每个社交平台覆盖的群体不同,所以在不同的平台进行广告投放时,要考虑受众群体和目标客户是匹配的。今天给大家分享几种常用的营销方式可以帮助…...

SpringBoot之logback-spring.xml详细配置

《logback官网》 各种指导文件&#xff0c;有空自己去看&#xff0c;比如&#xff1a;我们需要调整的是布局&#xff0c;直接看Layouts。 pom.xml <!-- 环境配置 --><profiles><profile><id>dev</id><properties><spring.profiles.a…...

P2141 [NOIP2014 普及组] 珠心算测验

题目背景 NOIP2014 普及 T1 题目描述 珠心算是一种通过在脑中模拟算盘变化来完成快速运算的一种计算技术。珠心算训练&#xff0c;既能够开发智力&#xff0c;又能够为日常生活带来很多便利&#xff0c;因而在很多学校得到普及。 某学校的珠心算老师采用一种快速考察珠心算…...

[回馈]ASP.NET Core MVC开发实战之商城系统(四)

经过一段时间的准备&#xff0c;新的一期【ASP.NET Core MVC开发实战之商城系统】已经开始&#xff0c;在之前的文章中&#xff0c;讲解了商城系统的整体功能设计&#xff0c;页面布局设计&#xff0c;环境搭建&#xff0c;系统配置&#xff0c;及首页【商品类型&#xff0c;ba…...

Vue.js常见错误处理包含代码

目录 以下是 Vue.js 中常见的错误&#xff0c;以及相应的处理方法和代码示例&#xff1a; 语法错误 错误信息&#xff1a;Error: [vm] "name" is not defined 解决方法&#xff1a;确保组件的 data 中定义了相同的属性。 示例代码&#xff1a; <template> &l…...

Go项目实现日志按时间及文件大小切割并压缩

关于日志的一些问题: 单个文件过大会影响写入效率&#xff0c;所以会做拆分&#xff0c;但是到多大拆分? 最多保留几个日志文件&#xff1f;最多保留多少天&#xff0c;要不要做压缩处理&#xff1f; 一般都使用 lumberjack[1]这个库完成上述这些操作 lumberjack //info文件wr…...

容器化的好处

容器化&#xff0c;是指使用容器技术&#xff08;Docker/containerd等&#xff09;运行应用程序&#xff08;容器&#xff09;&#xff0c;并使用容器编排技术&#xff08;例如 K8s&#xff09;来管理这些容器。 我在之前的文章 《使用 Dockerfile 构建生产环境镜像》 提及普通…...

TPlink DDNS 内网穿透?外网访问设置方法

有很多小伙伴都想知道&#xff1a;TPlink路由器怎么设置DDNS内网穿透&#xff1f;今天&#xff0c;小编就给大家分享一下TPlink DDNS 外网访问设置方法&#xff0c;下面是图文教程&#xff0c;帮助新手快速入门DDNS设置。 本文介绍的是云路由器TP-LINK DDNS的设置方法。TP-LIN…...

以CS32F031为例浅说国产32位MCU的内核处理器

芯片内核又称CPU内核&#xff0c;它是CPU中间的核心芯片&#xff0c;是CPU最重要的组成部分。由单晶硅制成&#xff0c;CPU所有的计算、接受/存储命令、处理数据都由核心执行。各种CPU核心都具有固定的逻辑结构&#xff0c;一级缓存、二级缓存、执行单元、指令级单元和总线接口…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...