当前位置: 首页 > news >正文

[openCV]基于拟合中线的智能车巡线方案V3

import cv2 as cv
import os
import numpy as np# 遍历文件夹函数
def getFileList(dir, Filelist, ext=None):"""获取文件夹及其子文件夹中文件列表输入 dir:文件夹根目录输入 ext: 扩展名返回: 文件路径列表"""newDir = dirif os.path.isfile(dir):if ext is None:Filelist.append(dir)else:if ext in dir[-3:]:Filelist.append(dir)elif os.path.isdir(dir):for s in os.listdir(dir):newDir = os.path.join(dir, s)getFileList(newDir, Filelist, ext)return Filelistdef mid(follow, mask):crossroads = FalsehalfWidth = follow.shape[1] // 2half = halfWidth  # 从下往上扫描赛道,最下端取图片中线为分割线for y in range(follow.shape[0] - 1, -1, -1):# V2改动:加入分割线左右各半张图片的宽度作为约束,减小邻近赛道的干扰if (mask[y][max(0, half - halfWidth):half] == np.zeros_like(mask[y][max(0, half - halfWidth):half])).all():  # 分割线左端无赛道left = max(0, half - halfWidth)  # 取图片左边界else:left = np.average(np.where(mask[y][0:half] == 255))  # 计算分割线左端平均位置if (mask[y][half:min(follow.shape[1], half + halfWidth)] == np.zeros_like(mask[y][half:min(follow.shape[1], half + halfWidth)])).all():  # 分割线右端无赛道right = min(follow.shape[1], half + halfWidth)  # 取图片右边界else:right = np.average(np.where(mask[y][half:follow.shape[1]] == 255)) + half  # 计算分割线右端平均位置mid = (left + right) // 2  # 计算拟合中点vibra = abs(mid - half)  # 振荡偏差# V3改动:检测到异常振荡则判定为十字路口,并保持直行if vibra > 30 and y < 479:crossroads = Truemid = int(mid)half = mid  # 递归,从下往上确定分割线follow[y, mid] = 255  # 画出拟合中线if y == 360:  # 设置指定提取中点的纵轴位置mid_output = midif crossroads:print("crossroads!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")mid_output = halfWidthcv.circle(follow, (mid_output, 360), 5, 255, -1)  # opencv为(x,y),画出指定提取中点error = follow.shape[1] // 2 - mid_output  # 计算图片中点与指定提取中点的误差return follow, error  # error为正数右转,为负数左转n = -1
# 存放图片的文件夹路径
path = "./phone"
imglist = getFileList(path, [])
for imgpath in imglist:n += 1if n < 0:continueimg = cv.imread(imgpath)img = cv.resize(img, (640, 480))# HSV阈值分割img_hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)mask = cv.inRange(img_hsv, np.array([43, 60, 90]), np.array([62, 255, 255]))follow = mask.copy()follow, error = mid(follow, mask)print(n, f"error:{error}")cv.imshow("img", img)cv.imshow("mask", mask)cv.imshow("follow", follow)cv.waitKey(0)cv.destroyAllWindows()

相关文章:

[openCV]基于拟合中线的智能车巡线方案V3

import cv2 as cv import os import numpy as np# 遍历文件夹函数 def getFileList(dir, Filelist, extNone):"""获取文件夹及其子文件夹中文件列表输入 dir&#xff1a;文件夹根目录输入 ext: 扩展名返回&#xff1a; 文件路径列表"""newDir d…...

vite+typescript项目 :找不到模块“./***.vue”或其相应的类型声明——解决方案

vue3ts报错&#xff1a; 找不到模块“./App.vue”或其相应的类型声明。ts(2307) 解决方法&#xff1a; 1、在src文件夹找到 vite-env.d.ts 加入以下代码&#xff1a; declare module *.vue {import type { DefineComponent } from vueconst vueComponent: DefineComponent<…...

Gradio-YOLOv5-YOLOv7 搭建Web GUI

目录 0 相关资料&#xff1a;1 Gradio介绍2 环境搭建3 GradioYOLOv54 GradioYOLOv75 源码解释 0 相关资料&#xff1a; Gradio-YOLOv5-Det&#xff1a;https://gitee.com/CV_Lab/gradio_yolov5_det 【手把手带你实战YOLOv5-入门篇】YOLOv5 Gradio搭建Web GUI: https://www.bi…...

HTML模板生成word,pdf文档

1.获取html模板 public static void main(String[] args) {String htmlContent getHtmlFileContent(templateName,dataMap);String exportType "pdf";if (exportType.equals("pdf")){convertToPdf(htmlContent,filePath);}else {exportWord(htmlContent…...

ssl单向证书和双向证书校验测试及搭建流程

零、前提准备 首先了解下HTTP和HTTPS的区别&#xff1a; HTTPS与HTTP有什么不同&#xff1f; HTTP是过去很长一段时间我们经常用到的一种传输协议。HTTP协议传输的数据都是未加密的&#xff0c;这就意味着用户填写的密码、账号、交易记录等机密信息都是明文&#xff0c;随时…...

【2种方法,jmeter用一个正则提取器提取多个值!】

jmeter中&#xff0c;用json提取器&#xff0c;一次提取多个值&#xff0c;这个很多人都会。但是&#xff0c;用正则提取器一次提取多个&#xff0c;是否可以呢&#xff1f; 肯定&#xff0c;很多人都自信满满的说&#xff0c;可以&#xff01;形如&#xff1a;token":&q…...

012-堆,结构体

012-堆,结构体 堆空间的申请和释放 堆空间特点? ​ 栈空间的特点是,自动申请自动释放 ​ 堆空间由用户自己主动申请,主动释放 ​ 利用函数malloc进行堆空间的申请 ​ 利用函数free进行堆空间使用完毕后的释放 问题: ​ 局部变量的存储空间在栈区; ​ 全局变量的存储空…...

GDAL C++ API 学习之路 OGRGeometry 多边形类 OGRPolygon

OGRPolygon class OGRPolygon 是 OGR 几何图形库中的一个类&#xff0c;用于表示多边形的几何图形。它是一种封闭的多边形&#xff0c;由一个或多个外环&#xff08;OGRLinearRing&#xff09;和零个或多个内环&#xff08;OGRLinearRing&#xff09;组成。多边形是平…...

文件传输协议FTP与托管文件传输MFT有什么区别?

传输敏感数据是日常业务中不可或缺的一环。但是&#xff0c;在把敏感数据从A点搬到B点的过程中&#xff0c;保证该敏感数据的安全是组织的重要任务&#xff0c;因此最好选择一种能够确保文件安全的方案。 FTP与MFT有什么不同&#xff1f; FTP&#xff08;文件传输协议&#xf…...

js实现按照句号将一段文本进行分段

/*** 将给定的文本按照300字并且按照句号分为多个p标签** param text 给定的文本* returns 返回分割后的多个p标签的数组*/ function splitTextByParagraph(text) {// 将文本按照句号分割成多个句子const sentences text.split(。);// 初始化一个空数组来存储生成的p标签const…...

环形链表的进一步探究

茕茕白兔&#xff0c;东走西顾&#xff0c;衣不如新&#xff0c;人不如故 往期回顾&#xff1a; 数据结构——双向链表 数据结构——单链表 数据结构——顺序表 文章目录 如何判断一个链表是否为环形链表 环形链表的判断的深入探究 例1&#xff1a;沸羊羊追美羊羊 例…...

flink任务性能优化

1、使用异步算子&#xff0c;异步执行操作 2、将下游数据需要的数据以参数的形式向下传递 3、当服务器资源有限的情况下&#xff0c;慎用RocksDBStateBackend RocksDBStateBackend performance will be poor because of the current Flink memory configuration! RocksDB wi…...

vue2 el-carousel轮播图和文字一起改变

vue项目的话 安装一下element依赖 npm i element-ui -S在main入口文件引入element包 我在app文件里边去写的 <template><div class"w"><el-carousel height"460px"><el-carousel-item v-for"item in items" :key"i…...

LangChain:打造自己的LLM应用 | 京东云技术团队

1、LangChain是什么 LangChain是一个框架&#xff0c;用于开发由LLM驱动的应用程序。可以简单认为是LLM领域的Spring&#xff0c;以及开源版的ChatGPT插件系统。核心的2个功能为&#xff1a; 1&#xff09;可以将 LLM 模型与外部数据源进行连接。 2&#xff09;允许与 LLM 模…...

字节跳动测试岗,3面都过了,HR告诉我这个原因被刷了...

说在前面 面试时最好不要虚报工资。本来字节跳动是很想去的&#xff0c;几轮面试也通过了&#xff0c;最后没offer&#xff0c;自己只想到下面几个原因&#xff1a; 虚报工资&#xff0c;比实际高30%&#xff1b; 有更好的人选&#xff0c;这个可能性不大&#xff0c;我看还在…...

Android 14重要更新预览

Android 14重要更新预览 国际化 Android 14 在 Android 13 的基础上进一步扩展了按应用设定语言功能&#xff0c;提供了一些额外的功能&#xff1a; 自动生成应用的 localeConfig&#xff1a;从 Android Studio Giraffe Canary 7 和 AGP 8.1.0-alpha07 开始&#xff0c;您可以…...

快速上手字符串函数

文章目录 前言一、求字符串的长度strlen函数strlen函数学习使用strlen函数模拟实现strlen函数模拟实现方法1&#xff1a;计数器法strlen函数模拟实现方法2&#xff1a;指针减指针法strlen函数模拟实现方法3&#xff1a;递归方法 二、字符串的拷贝&#xff0c;拼接和比较strcpy函…...

linux(centos) docker 安装 nginx

​1、拉取nginx最新版本镜像 docker pull nginx:latest 查看镜像 docker images 或者 docker images -a 2.启动nginx容器 docker run -d -p 80:80 --name nginx nginx 使用docker run命令&#xff0c;启动nginx容器。 --name&#xff0c;设置容器名。为方便记忆&#xff…...

SpringBoot 整合 Minio

官网&#xff1a; MinIO 是一个基于 Go 实现的高性能、兼容 S3 协议的对象存储。它采用 GNU AGPL v3 开源协议&#xff0c;项目地址是 https://github.com/minio/minio 。 它适合存储海量的非结构化的数据&#xff0c;例如说图片、音频、视频等常见文件&#xff0c;备份数据、…...

《吐血整理》高级系列教程-吃透Fiddler抓包教程(24)-Fiddler如何优雅地在正式和测试环境之间来回切换-中篇

1.简介 在开发或者测试的过程中&#xff0c;由于项目环境比较多&#xff0c;往往需要来来回回地反复切换&#xff0c;那么如何优雅地切换呢&#xff1f;宏哥今天介绍几种方法供小伙伴或者童鞋们进行参考。 2.实际工作场景 2.1问题场景 &#xff08;1&#xff09;已发布线上…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

篇章二 论坛系统——系统设计

目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...

跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践

在电商行业蓬勃发展的当下&#xff0c;多平台运营已成为众多商家的必然选择。然而&#xff0c;不同电商平台在商品数据接口方面存在差异&#xff0c;导致商家在跨平台运营时面临诸多挑战&#xff0c;如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...

ArcGIS Pro+ArcGIS给你的地图加上北回归线!

今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等&#xff0c;设置经线、纬线都以10间隔显示。 2、需要插入背会归线&#xf…...