Gradio-YOLOv5-YOLOv7 搭建Web GUI
目录
- 0 相关资料:
- 1 Gradio介绍
- 2 环境搭建
- 3 Gradio+YOLOv5
- 4 Gradio+YOLOv7
- 5 源码解释
0 相关资料:
Gradio-YOLOv5-Det:https://gitee.com/CV_Lab/gradio_yolov5_det
【手把手带你实战YOLOv5-入门篇】YOLOv5 Gradio搭建Web GUI: https://www.bilibili.com/video/BV1LP411Z7nk
YOLOv5 Gradio 搭建Web GUI:https://blog.csdn.net/weixin_41987016/article/details/129891804
How to Load local YOLOv7 model using PyTorch torch.hub: https://androidkt.com/how-to-load-local-yolov7-model-using-pytorch-torch-hub/
1 Gradio介绍
官网:https://www.gradio.app/
Gradio是一个开源的Python库,用于构建机器学习演示和Web应用。内置丰富的组件,并且实现了前后端的交互逻辑,无需额外编写代码。
2 环境搭建
开始前,我用conda创建了虚拟环境yolo,然后安装了torch
这里还需要安装gradio
pip install gradio
还需要安装yolov5
git clone https://gitee.com/YFwinston/yolov5.git
cd yolov5
pip install -r requirements.txt
测试是否安装成功
python detect.py --source ./data/images/bus.jpg
yolov7的安装方法类似,就不重复了
3 Gradio+YOLOv5
在yolov5的目录下,创建main.py,内容如下:
import torch
import gradio as grmodel = torch.hub.load("./","custom",path="yolov5s.pt",source="local")
gr.Interface(inputs=["image"],outputs=["image"],fn=lambda img:model(img).render()[0]).launch()
执行:
python main.py


4 Gradio+YOLOv7
在yolov7的目录下,创建main.py,内容如下:
import torch
import gradio as grmodel = torch.hub.load('./', 'custom', 'yolov7_HRW_4.2k.pt',force_reload=True, source='local',trust_repo=True)
gr.Interface(inputs=["image"],outputs=["image"],fn=lambda img:model(img).render()[0]).launch()
备注:这里我用的我自己训练的yolov7模型yolov7_HRW_4.2k.pt
执行:
python main.py


5 源码解释
import torch
import gradio as grmodel = torch.hub.load("./","custom",path="yolov5s.pt",source="local")
gr.Interface(inputs=["image"],outputs=["image"],fn=lambda img:model(img).render()[0]).launch()
当中的各个参数的意思如下:
-
torch.hub.load()是用于从 Torch Hub 加载预训练模型的函数。它的参数如下:"./":指定模型所在的本地文件路径。可以根据实际情况修改为正确的路径。"custom":指定要加载的模型的名称。path="yolov5s.pt":指定要加载的模型文件的路径。在此示例中,yolov5s.pt是模型文件的名称。source="local":指定模型文件的来源。在此示例中,模型文件是从本地加载的。
-
gr.Interface()是 Gradio 库中用于创建交互式界面的类。它的参数如下:inputs=["image"]:指定输入的类型和名称。在此示例中,输入是一个图像,名称为 “image”。outputs=["image"]:指定输出的类型和名称。在此示例中,输出是一个图像,名称为 “image”。fn=lambda img:model(img).render()[0]:指定要在用户输入上执行的函数。在此示例中,该函数接受一个图像作为输入,并使用加载的模型对图像进行推断,然后返回推断结果中的第一个图像。launch():启动 Gradio 接口,使其可以在浏览器中访问。
注意:以上是对参数的解释,实际上的参数值可能需要根据具体情况进行修改。
import torch
import gradio as grmodel = torch.hub.load('./', 'custom', 'yolov7_HRW_4.2k.pt',force_reload=True, source='local',trust_repo=True)
gr.Interface(inputs=["image"],outputs=["image"],fn=lambda img:model(img).render()[0]).launch()
当中的各个参数的意思如下:
torch.hub.load()是用于从 Torch Hub 加载预训练模型的函数。它的参数如下:"./":指定模型所在的本地文件路径。可以根据实际情况修改为正确的路径。"custom":指定要加载的模型的名称。"yolov7_HRW_4.2k.pt":指定要加载的模型文件的路径。在此示例中,yolov7_HRW_4.2k.pt是模型文件的名称。force_reload=True:强制重新加载模型文件,即使已经存在缓存的模型。source="local":指定模型文件的来源。在此示例中,模型文件是从本地加载的。trust_repo=True:信任 Torch Hub 仓库,以便加载模型文件。
gr.Interface()是 Gradio 库中用于创建交互式界面的类。它的参数如下:inputs=["image"]:指定输入的类型和名称。在此示例中,输入是一个图像,名称为 "image"。outputs=["image"]:指定输出的类型和名称。在此示例中,输出是一个图像,名称为 "image"。fn=lambda img:model(img).render()[0]:指定要在用户输入上执行的函数。在此示例中,该函数接受一个图像作为输入,并使用加载的模型对图像进行推断,然后返回推断结果中的第一个图像。launch():启动 Gradio 接口,使其可以在浏览器中访问。
注意:以上是对参数的解释,实际上的参数值可能需要根据具体情况进行修改。
相关文章:
Gradio-YOLOv5-YOLOv7 搭建Web GUI
目录 0 相关资料:1 Gradio介绍2 环境搭建3 GradioYOLOv54 GradioYOLOv75 源码解释 0 相关资料: Gradio-YOLOv5-Det:https://gitee.com/CV_Lab/gradio_yolov5_det 【手把手带你实战YOLOv5-入门篇】YOLOv5 Gradio搭建Web GUI: https://www.bi…...
HTML模板生成word,pdf文档
1.获取html模板 public static void main(String[] args) {String htmlContent getHtmlFileContent(templateName,dataMap);String exportType "pdf";if (exportType.equals("pdf")){convertToPdf(htmlContent,filePath);}else {exportWord(htmlContent…...
ssl单向证书和双向证书校验测试及搭建流程
零、前提准备 首先了解下HTTP和HTTPS的区别: HTTPS与HTTP有什么不同? HTTP是过去很长一段时间我们经常用到的一种传输协议。HTTP协议传输的数据都是未加密的,这就意味着用户填写的密码、账号、交易记录等机密信息都是明文,随时…...
【2种方法,jmeter用一个正则提取器提取多个值!】
jmeter中,用json提取器,一次提取多个值,这个很多人都会。但是,用正则提取器一次提取多个,是否可以呢? 肯定,很多人都自信满满的说,可以!形如:token":&q…...
012-堆,结构体
012-堆,结构体 堆空间的申请和释放 堆空间特点? 栈空间的特点是,自动申请自动释放 堆空间由用户自己主动申请,主动释放 利用函数malloc进行堆空间的申请 利用函数free进行堆空间使用完毕后的释放 问题: 局部变量的存储空间在栈区; 全局变量的存储空…...
GDAL C++ API 学习之路 OGRGeometry 多边形类 OGRPolygon
OGRPolygon class OGRPolygon 是 OGR 几何图形库中的一个类,用于表示多边形的几何图形。它是一种封闭的多边形,由一个或多个外环(OGRLinearRing)和零个或多个内环(OGRLinearRing)组成。多边形是平…...
文件传输协议FTP与托管文件传输MFT有什么区别?
传输敏感数据是日常业务中不可或缺的一环。但是,在把敏感数据从A点搬到B点的过程中,保证该敏感数据的安全是组织的重要任务,因此最好选择一种能够确保文件安全的方案。 FTP与MFT有什么不同? FTP(文件传输协议…...
js实现按照句号将一段文本进行分段
/*** 将给定的文本按照300字并且按照句号分为多个p标签** param text 给定的文本* returns 返回分割后的多个p标签的数组*/ function splitTextByParagraph(text) {// 将文本按照句号分割成多个句子const sentences text.split(。);// 初始化一个空数组来存储生成的p标签const…...
环形链表的进一步探究
茕茕白兔,东走西顾,衣不如新,人不如故 往期回顾: 数据结构——双向链表 数据结构——单链表 数据结构——顺序表 文章目录 如何判断一个链表是否为环形链表 环形链表的判断的深入探究 例1:沸羊羊追美羊羊 例…...
flink任务性能优化
1、使用异步算子,异步执行操作 2、将下游数据需要的数据以参数的形式向下传递 3、当服务器资源有限的情况下,慎用RocksDBStateBackend RocksDBStateBackend performance will be poor because of the current Flink memory configuration! RocksDB wi…...
vue2 el-carousel轮播图和文字一起改变
vue项目的话 安装一下element依赖 npm i element-ui -S在main入口文件引入element包 我在app文件里边去写的 <template><div class"w"><el-carousel height"460px"><el-carousel-item v-for"item in items" :key"i…...
LangChain:打造自己的LLM应用 | 京东云技术团队
1、LangChain是什么 LangChain是一个框架,用于开发由LLM驱动的应用程序。可以简单认为是LLM领域的Spring,以及开源版的ChatGPT插件系统。核心的2个功能为: 1)可以将 LLM 模型与外部数据源进行连接。 2)允许与 LLM 模…...
字节跳动测试岗,3面都过了,HR告诉我这个原因被刷了...
说在前面 面试时最好不要虚报工资。本来字节跳动是很想去的,几轮面试也通过了,最后没offer,自己只想到下面几个原因: 虚报工资,比实际高30%; 有更好的人选,这个可能性不大,我看还在…...
Android 14重要更新预览
Android 14重要更新预览 国际化 Android 14 在 Android 13 的基础上进一步扩展了按应用设定语言功能,提供了一些额外的功能: 自动生成应用的 localeConfig:从 Android Studio Giraffe Canary 7 和 AGP 8.1.0-alpha07 开始,您可以…...
快速上手字符串函数
文章目录 前言一、求字符串的长度strlen函数strlen函数学习使用strlen函数模拟实现strlen函数模拟实现方法1:计数器法strlen函数模拟实现方法2:指针减指针法strlen函数模拟实现方法3:递归方法 二、字符串的拷贝,拼接和比较strcpy函…...
linux(centos) docker 安装 nginx
1、拉取nginx最新版本镜像 docker pull nginx:latest 查看镜像 docker images 或者 docker images -a 2.启动nginx容器 docker run -d -p 80:80 --name nginx nginx 使用docker run命令,启动nginx容器。 --name,设置容器名。为方便记忆ÿ…...
SpringBoot 整合 Minio
官网: MinIO 是一个基于 Go 实现的高性能、兼容 S3 协议的对象存储。它采用 GNU AGPL v3 开源协议,项目地址是 https://github.com/minio/minio 。 它适合存储海量的非结构化的数据,例如说图片、音频、视频等常见文件,备份数据、…...
《吐血整理》高级系列教程-吃透Fiddler抓包教程(24)-Fiddler如何优雅地在正式和测试环境之间来回切换-中篇
1.简介 在开发或者测试的过程中,由于项目环境比较多,往往需要来来回回地反复切换,那么如何优雅地切换呢?宏哥今天介绍几种方法供小伙伴或者童鞋们进行参考。 2.实际工作场景 2.1问题场景 (1)已发布线上…...
探索 GPTCache|GPT-4 将开启多模态 AI 时代,GPTCache + Milvus 带来省钱秘籍
世界正处于数字化的浪潮中,为了更好理解和分析大量数据,人们对于人工智能(AI)解决方案的需求呈爆炸式增长。 此前,OpenAI 推出基于 GPT-3.5 模型的智能对话机器人 ChatGPT,在自然语言处理(NLP&a…...
纯css实现登录表单动效
效果图: 代码展示 // 我这边用的是elementUI表单校验,更改的样式。 <el-form:model"form":rules"rules"ref"fromList":hide-required-asterisk"true"><el-form-item prop"account"><…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...
Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...
【iOS】 Block再学习
iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...
