为机器人装“大脑” 谷歌发布RT-2大模型
大语言模型不仅能让应用变得更智能,还将让机器人学会举一反三。在谷歌发布RT-1大模型仅半年后,专用于机器人的RT-2大模型于近期面世,它能让机器人学习互联网上的文本和图像,并具备逻辑推理能力。
该模型为机器人智能带来显著升级——即便在机器人没有经历过的场景下,RT-2也通过学习让它根据指令完成任务。
谷歌DeepMind机器人技术主管Vincent举例称,如果让以前的机器人丢垃圾,必须要专门训练它理解什么是垃圾、如何捡起和扔到哪去。现在RT-2能够从网络数据上学习识别和处理垃圾的方法,不必逐一特训不同的场景了。
AI的发展让机器人的“大脑”实现了物种进化般的迭代,另一面是,机器人失控的风险也随之增加。
RT-2大模型实现机器人自主学习
ChatGPT的火爆,让世界见识了大语言模型的强大力量。人们对大模型不再陌生,开始使用基于大模型的应用绘画、作图、搜索资料、设计剧情等,而妙用不止于此。谷歌脑洞大开,专门给机器人造了个大模型,让机器人拥有了自主学习能力。
不久前,谷歌旗下DeepMind发布了一款名为Robotics Transformer 2(简称RT-2)的新型视觉-语言-动作(VLA)模型,该模型相当于机器人的专用大脑,能够指导机器人识别视觉和语言,让其理解指令并做出正确的操作。
谷歌介绍,RT-2基于Transformer模型开发,根据互联网上的文本和图像进行训练,直接指示机器人执行动作。就像用文本训练大语言模型学习人类知识一样,RT-2可以将网络数据喂给机器人,指导机器人的行为。
为了展示RT-2的能力,谷歌发布了一个演示视频,让搭载RT-2的机器人完成一些它此前从未经过训练的项目。
视频中,面对一堆随意放在桌上的物品,搭载了RT-2模型的机械臂能够听懂人类语言并做出相应的反应。
比如,命令它“捡起已灭绝的动物”,机械臂就能从狮子、鲸鱼、恐龙这三个塑料玩具中准确选择恐龙;如果命令它将香蕉放到2+1的总和的位置,机械臂直接把香蕉放在了数字3的位置;再让它把草莓放入碗里,机器人也能够无视苹果、橘子等水果,选对草莓。
不过,在演示过程中,机器人也出现了错误,它不能准确地识别汽水口味,这让它看起来还有不小的优化空间。

搭载RT-2的机器人能按人类指令行事
即便还不够完美,但机器人能够自主理解、推理和执行任务,已经是一个长足的进步。
DeepMind机器人技术主管 Vincent 以“扔垃圾”这个看似简单的操作举例,如果想要以前的系统执行丢弃垃圾的行为,必须明确训练它识别和处理垃圾,而RT-2可以从大量网络数据中学习并理解什么是垃圾,并在未经特定训练的情况下进行识别。尽管未曾接受过相关动作训练,但它能掌握如何丢弃垃圾的方法。“考虑到垃圾的抽象性,比如各种薯片包或香蕉皮在你食用后就成为了垃圾,RT-2 能通过其视觉语言培训数据理解这个概念,并完成任务。
RT-2就给机器人输入了认知能力,让它能够在互联网上学习和进步,甚至还能进行一般推理。这对于机器人产业来说,不亚于一次物种进化。
机器人加速进化再触AI安全底线
事实上,给机器人装上大脑这件事,谷歌并不是第一次尝试了。就在去年12月,谷歌发布了RT-1大模型,它可以标记机器人输入和输出的动作,在运行时实现高效推理,并使实时控制成为可能。
RT-1模型是在一个包含130k个“情景”的大型真实世界机器人数据集上训练的,该数据集涵盖700多项任务,由13台机器人在17个月内收集而成。也就是说,RT-1大模型可以让单一机器人,学习其他机器人在过去积攒的经验,从而具备相应的能力。

RT-1大模型论文
当时,谷歌让搭载RT-1的机器人进行一系列复杂操作,包括拾取和放置物品、打开和关闭抽屉、将物品放入和取出抽屉、将细长的物品直立放置、敲倒物体、拉出餐巾纸和打开罐子。据团队称,RT-1 以 97% 的成功率执行了 700 多个训练指令,并且可以泛化到新的任务。
但对于没有具体学习过的场景,RT-1还是很难自主依据推理完成任务。根据测试,它在不熟悉的场景下,操作的准确率只有32%。
如果说当时的RT-1还是个“教什么学什么”的小学生,RT-2则进步成了能够举一反三的初高中生。在没见过的新场景中,RT-2 的性能表现几乎翻了一番,从RT-1的32%提高到了62%,而此时距离RT-1的发布时间仅仅过去了半年多。
谷歌 DeepMind机器人技术主管Vincent 解释,RT-2 建立在 RT-1 模型的基础上,消除了一些复杂性;使单个模型不仅能够执行基础模型中看到的复杂推理,而且还可以输出机器人动作。最重要的是,它表明在少量的机器人训练数据下,该系统就能够将其语言和视觉训练数据中嵌入的概念转变为指导机器人行为,即使是从未接受过训练的任务。“简而言之,RT-2 的能力在于将信息转化为行动,这显示了其快速适应新环境和情况的潜力。”
得益于大模型的快速进步,机器人产业迎来了质变,按照谷歌的迭代速度,或许明年就能看到更强大的RT-3。
研究机器人的不止谷歌,特斯拉也对机器人兴趣浓厚。今年5月,特斯拉发布了一个视频,5个人形机器人在工厂中直立行走,它们装备了很多传感器,能够探测周围环境,执行分拣物品等任务。特斯拉的机器人也在走AI路线,这家电动汽车厂商的CEO马斯克称,特斯拉正在尝试打通电动汽车的辅助驾驶软件(FSD)系统和人形机器人的底层模块,让机器人智商在线。
而倘若后续特斯拉机器人能够接入RT-2甚至更高级的大模型,机器人的能力预计又将大幅进步。
但越来越聪明的机器人,也加剧了人们对AI失控的担忧。大模型的软件应用可能会在网络学习中操控人类的思想、舆论,金属外壳的人形机器人直接具备了物理杀伤力。
有人在社交媒体发问,“人类是否亲手打开了一个潘多拉魔盒?”
如何规训机器人,仍然回到了大模型安全性这一老问题上,但这个问题至今还未在全球的研究与应用领域达成共识。
技术另一面的未知危机仍未解除,装上AI大脑的机器人出现了,你会期待还是警惕?
相关文章:
为机器人装“大脑” 谷歌发布RT-2大模型
大语言模型不仅能让应用变得更智能,还将让机器人学会举一反三。在谷歌发布RT-1大模型仅半年后,专用于机器人的RT-2大模型于近期面世,它能让机器人学习互联网上的文本和图像,并具备逻辑推理能力。 该模型为机器人智能带来显著升级…...
JavaEE 面试常见问题
一、常见的 ORM 框架有哪些? 1.Mybatis Mybatis 是一种典型的半自动的 ORM 框架,所谓的半自动,是因为还需要手动的写 SQL 语句,再由框架根据 SQL 及 传入数据来组装为要执行的 SQL 。其优点为: 1. 因为由程序员…...
06 HTTP(下)
06 HTTP(下) 介绍服务器如何响应请求报文,并将该报文发送给浏览器端。介绍一些基础API,然后结合流程图和代码对服务器响应请求报文进行详解。 基础API部分,介绍stat、mmap、iovec、writev。 流程图部分,描…...
clickhouse调研报告2
由Distributed表发送分片数据 clickhouse分区目录合并 clickhouse副本协同流程 clickhouse索引查询逻辑 clickhouse一级索引生成逻辑(两主键) clickhouse的data目录下包含如下目录: [root@brfs-stress-01 201403_10_10_0]# ll /data01/clickhouse/data total 4 drwxr-x---…...
TensorRT学习笔记--基于TensorRT部署YoloV3, YoloV5和YoloV8
目录 1--完整项目 2--模型转换 3--编译项目 4--序列化模型 5--推理测试 1--完整项目 以下以 YoloV8 为例进行图片和视频的推理,完整项目地址如下:https://github.com/liujf69/TensorRT-Demo git clone https://github.com/liujf69/TensorRT-Demo.…...
原型链污染,nodejs逃逸例子
文章目录 原型链污染原型链污染原理原型链污染小例子 原型链污染题目解析第一题第二题 Nodejs沙箱逃逸方法一方法二 原型链污染 原型链污染原理 原型链 function test(){this.a test; } b new test;可以看到b在实例化为test对象以后,就可以输出test类中的属性a…...
nlohmann::json 中文乱码解决方案
// UTF8字符串转成GBK字符串 std::string U2G(const std::string& utf8) {int nwLen MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), -1, NULL, 0);wchar_t* pwBuf new wchar_t[nwLen 1];//加1用于截断字符串 memset(pwBuf, 0, nwLen * 2 2);MultiByteToWideChar(CP_U…...
IDEA中maven项目失效,pom.xml文件橙色/橘色
IDEA中maven项目失效,pom.xml文件橙色/橘色 IDEA中Maven项目失效 IDEA中创建的maven项目中的文件夹都变成普通格式,pom.xml变成橙色 右键点击橙色的pom.xml文件,选择add as maven project maven项目开始重新导入相应依赖,恢复…...
【雕爷学编程】MicroPython动手做(28)——物联网之Yeelight 2
知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…...
IntelliJ IDEA 2023.2社区版插件汇总
参考插件帝:https://gitee.com/zhengqingya/java-developer-document 突发小技巧:使用插件时要注意插件的版本兼容性,并根据自己的实际需求选择合适的插件。同时,不要过度依赖插件,保持简洁和高效的开发环境才是最重要…...
Sheel编写关于mysqldump实现分库分表备份
编写脚本,使用mysqldump实现分库分表备份。 #编辑脚本文件 [rootlocalhost scripts]# vim bak_tb1.sh#脚本内容: #设置变量,减少代码冗余 mysql_cmd-uroot -p123 exclude_dbDatabase|information_schema|-S|mysql|performance_schema|sys ba…...
Rust的入门篇(上)
Rust的入门篇(上) 最近跟着菜鸟一起入门了比较火的Rust语言,下面整理一下学习的笔记吧。 1. Helloworld程序 fn main(){println!("hello rust") }2. 格式化字符串 fn main(){let a 12;// 格式化字符串println!("a{}", a);println!("a…...
数字滚动变化-指令形式
话不多说,直接上代码 <template><divv-data-scroll"{target: 100speed: 1000}">100</div> </template><script setup lang"ts"> import { DirectiveBinding } from vue;function dataScroll(el: HTMLElement, …...
LNMP搭建及论坛搭建
一、LNMP LNMP架构是目前成熟的企业网站应用模式之一,指的是协同工作的一整套系统和相关软件, 能够提供动态Web站点服务及其应用开发环境。LNMP是一个缩写词,具体包括Linux操作系统、nginx网站服务器、MySQL数据库服务器、PHP(或…...
小程序商品如何开启秒杀?
在小程序中,开启秒杀活动可以有效地吸引用户的注意力,提升销售额。下面就让我们来看看小程序商品怎么开启秒杀功能吧。 首先,确定秒杀活动的商品。一般来说,我们可以选择一些库存较多的商品或者是需要清理库存的商品作为秒杀商品…...
vue 标题文字字数过长超出部分用...代替 动态显示
效果: 浏览器最大化: 浏览器缩小: 代码: html: <div class"title overflow">{{item.name}}</div> <div class"content overflow">{{item.content}}</div> css: .overflow {/* 一定要加宽度 */width: 90%;/* 文字的大小 */he…...
DAY2,C高级(shell脚本的使用)
1.今日思维导图; 2.递归实现,输入一个数,输出这个数的每一位; #include<my_head.h>void Output(int num) {if(num 0)return;Output(num/10);printf("%d ",num%10);}int main(int argc, const char *argv[]) {in…...
maven中的properties标签
在maven构建项目的时候经常遇到如下所示的标签配置: <dependency><groupId>org.springframework</groupId><artifactId>spring-core</artifactId> <version>4.2.6</version></dependency><dependency><gr…...
[openCV]基于拟合中线的智能车巡线方案V2
import cv2 as cv import os import numpy as np# 遍历文件夹函数 def getFileList(dir, Filelist, extNone):"""获取文件夹及其子文件夹中文件列表输入 dir:文件夹根目录输入 ext: 扩展名返回: 文件路径列表"""newDir d…...
软件测试环境讲解
在一个项目开发到发布的整个过程中,会使用到很多个环境进行测试和运行项目。最基本的开发环境、测试环境、准生产环境、生成环境 一、开发环境 开发环境顾名思义就是我们程序猿自己把项目放到自己的电脑上,配置好以后,跑起来项目,…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
